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This study develops a two-stage stochastic mixed-integer programming model to manage multi-purpose
pellet processing depots under feedstock supply uncertainty. The proposed optimization model would
help to minimize cost and mitigate emissions from the supply chain network. We consider three alterna-
tive Biomass Processing and Densification Depot (BPDD) technologies; namely, conventional pellet
processing, high moisture pellet processing, and ammonia fiber expansion. These three technologies
pre-process/pre-treat and densify different types of biomass into more highly densified intermediate
products for different markets in order to improve movability and overall supply network performance
in terms of costs and emissions. A hybrid decomposition algorithm was developed that combines
Sample Average Approximation with an enhanced Progressive Hedging (PH) algorithm to solve this chal-
lenging NP-hard problem. Some heuristics such as Rolling Horizon (RH) heuristic, variable fixing tech-
nique were later applied to further enhance the PH algorithm. Mississippi and Alabama were selected as a
testing ground and ArcGIS was employed to visualize and validate the modeling results. The results of the
analysis reveal promising insights that could lead to recommendations to help decision makers achieve a
more cost-effective environmentally-friendly supply chain network.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Bioenergy is considered to be a substitute source of energy that
is necessary to help alleviate the reliance on petroleum energy. For
decades, U.S. bioenergy production has depended heavily on con-
ventional biomass supply systems. However, the current volatility
in the crude oil market and the recent shutdown of some cellulosic
bio-fuel plants necessitate the development of a more sustainable
feedstock for future bio-economy growth. Feedstock can be defined
as any renewable biological material including forest residue
(wood), agricultural residue (corn-stover), and energy crops
(switchgrass, miscanthus, sorghum). Feedstock developed for
bioenergy could be made more sustainable if it had the flexibility
to serve multiple markets in addition to bioenergy. Such markets
could be bio-refineries, coal industries, pulp and paper industries,
and animal feed markets (Bruglieri & Liberti, 2008; Vogel,
Schmer, & Mitchell, 2010).
To develop a wide range of sustainable feedstocks, a biomass
processing densification depot must be established in order to
achieve a cost-effective outcome with the least risk. A Biomass Pro-
cessing Densification Depot (BPDD) is a facility where biomass is
densified into a stable feedstock to be supplied to larger facilities
for energy production (Chai & Saffron, 2016; Parkhurst, Saffron, &
Miller, 2016). BPDDs aggregate, store, moderately process and den-
sify the biomass prior to delivering it to the bio-fuel markets.
Although BPDD goals include such things as improving movability,
derisking bio-refineries, increasing accessible resources, and
enhancing quality control, the primary concerns of a BPDD system
are to reduce material loss and to convert the low density biomass
into a more stable, more densified product so that it can be trans-
ported over a much longer distance in a cost effective way (Eranki,
Bals, & Dale, 2011; Rudolfsson, Stelte, & Lestander, 2015). Due to
the diverse characteristics of biomass, various processes like grind-
ing, densification, aggregating and mixing inside the depot produce
a more uniform commodity that can be delivered to various mar-
kets in order to standardize the supply system. BPDD systems also
increase the per acre utilization of biomass and enhance the usabil-
ity of direct and indirect land use (Eranki et al., 2011). However,
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the seasonality and the yield variation of the biomass will directly
impact the operation of a depot. For instance, the harvesting sea-
son for corn-stover starts in early September and ends in Novem-
ber, while woody biomass and miscanthus are available year
round, except for three months in the winter. This seasonality
not only impacts the operation of depot facilities for a given time
period of the year but also affects the overall biomass supply chain
activities. To address this challenge, supply chain managers need
optimization models to decide where to locate depots and how
to serve multiple markets (e.g., biorefinery, coal plants, pulp and
paper industries, animal feed industries) under feedstock supply
uncertainties. Three main alternative depots were identified to
pre-process, treat, and densify different types of biomass into more
highly densified intermediate products for different markets. The
three main alternative depots are: conventional pelleting process,
high moisture pelleting process, and ammonia fiber expansion.

Conventional Pelleting Process (CPP) and High Moisture Pelleting
Process (HMPP) are conducted at standard depots whereas Ammo-
nia Fiber Expansion Process (AFEX) is carried out at quality depot. A
standard depot increases feedstock stability and storability and
reduces material loss. In addition to the standard depot functions,
a quality depot contains various processing steps such as chemical
treatment, washing, hydrolysis, and leaching which help to reduce
the pretreatment requirements at a client facility (Lamers et al.,
2015). In a conventional pelleting process, pellets are reduced from
their initial size to less than 50 mm rotary dried, and then sent for
grinding to decrease particle size to less than 5 mm to meet parti-
cle size distribution requirements for pelleting (Lamers et al.,
2015). Fig. 1 illustrates the steps involved in a conventional pellet-
ing process (Lamers et al., 2015). CPP is selected to process forest
residue that is transported to the depot in chip format (2–3 in.)
for course size reduction through first stage grinding.
Fig. 1. Conventional Pelleting P

Fig. 2. High Moisture Pelleting Pr
In a high moisture pelleting process (HMPP), high-moisture
(30–35% MC) biomass is preheated and pelletized. In order to
increase stability and reduce moisture content, final pellets are
dried in a vertical grain dryer. These moderately dried pellets still
contain high moisture content and require further drying so the
moisture content falls below 9% to ensure safe storage and trans-
portation. Fig. 2 illustrates the various unit operations associated
with each step of HMPP (Lamers et al., 2015). An HMPP depot is
suitable to handle the high moisture generated from herbaceous
biomass (e.g., corn-stover, miscanthus) since it comes to the depot
in a bale format.

The Ammonia Fiber Expansion (AFEX) process is fundamentally
a dry to dry process since there is no watercourse produced during
pretreatment (Teymouri, Laureano-Perez, Alizadeh, & Dale, 2005).
AFEX ensures a higher conversion of different kinds of cellulosic
biomass. Fig. 3 demonstrates the various unit operations associ-
ated with each step in a quality depot (Lamers et al., 2015). In
the proposed model, the AFEX depot is selected to process corn-
stover and miscanthus since AFEX pretreatment increases the glu-
can and xylan conversion making the biomass more attractive as a
product for the animal feed market.
1.1. Related research

This section pursues two primary objectives. First, the current
themes in the biomass supply chain literature are identified. The
intent is to show some of the related methods used in biomass sup-
ply chain network and present the general thread running through
these methods. Second, two main gaps are addressed in the litera-
ture. The focus is to address these two gaps by developing a two-
stage stochastic mixed-integer linear programming (MILP) model
rocess (CPP) flow diagram.

ocess (HMPP) flow diagram.



Fig. 3. Ammonia Fiber Expansion (AFEX) process flow diagram.
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to design and manage a sustainable multi-purpose pellet processing
depots under feedstock seasonality fluctuations and uncertainty.

1.1.1. Current themes in the literature
The purpose of this subsection is to provide a synthesis of the

main contribution and themes of the current research in the liter-
ature as well as the current limitations and gaps.

The proper design of the biomass supply chain network is one of
the most significant and challenging phases of bio-fuel production
(Kim, Realff, Lee, Whittaker, & Furtner, 2011). In recent years,
research pertaining to supply chain optimization networks for bio-
mass and bio-fuel systems has flourished. Various models and
solutions have been developed and analyzed to determine the opti-
mal locations of supply sites, depots, and bio-fuel markets. While
some studies were conducted to integrate strategic and tactical
level supply chain network decisions (e.g., An, Wilhelm, & Searcy,
2011; Huang, Chen, & Fan, 2010), others used deterministic set-
tings and focused on plant location and transportation issues
(e.g., Eksioglu, Acharya, Leightley, & Arora, 2009; Roni, Eksioglu,
Searcy, & Jha, 2014; Memisoglu et al., in press; Xie & Ouyang,
2013).

The previous studies were extended to develop more capable
optimization models that could handle complexity and uncertain-
ties exhibited in bio-fuel supply chain networks (e.g., Awudu &
Zhang, 2013; Gebreslassie, Yao, & You, 2012; Kim, Realff, & Lee,
2011; Marufuzzaman, Eksioglu, & Huang, 2014). Although stochas-
tic models provide reliable solutions, they are less represented in
the literature due to the need of additional computational burden
and difficulties in developing solution algorithms. A brief overview
of studies dedicated to uncertainty and sustainability in a biofuel
supply chain network can be found in a recent study by Awudu
and Zhang (2012). Many researchers labelled facility reliability
and network sustainability as main concerns in bio-fuel supply
chain networks and highlighted the impact of network sustainabil-
ity and facility reliability on bio-fuel supply chain networks (e.g.,
Li, Peng, Bai, & Ouyang, 2015; Marufuzzaman, Li, Yu, & Zhou,
2016; Poudel, Marufuzzaman, & Bian, 2016b).

The literature pertaining to general network designing problem
that adopts a two-stage stochastic programming approach is
ample. For instance, Atamturk and Zhang (2007) and
Barbarosoglu and Arda (2004) developed a two-stage stochastic
programming model that considers multi-commodities and vul-
nerability of commodity sources under demand uncertainty. Kara
and Onut (2010) developed a two-stage stochastic programming
model that examines the reconstruction of a reversed supply chain
network design for a real-world paper recycling company. In the
same vein, Simic (2016) developed an interval-parameter two-
stage stochastic full-infinite programming approach for the man-
agement of the allocation of end-of-life vehicles by capturing
uncertainties in crisp intervals and probability distributions. Inter-
ested readers can review a number of recently solved network
designing problems that adopted two-stage stochastic program-
ming approach, including Qi and Sen (2017), Poudel,
Marufuzzaman, and Bian (2016a), Marufuzzaman et al. (2014),
Zhang, Johnson, and Wang (2016), and others. Besides these mod-
eling techniques, a number of decomposition algorithms are pro-
posed to solve these two-stage stochastic programming models,
such as L-shaped method (Rajgopal, Wang, Schaefer, &
Prokopyev, 2011), progressive hedging (PH) algorithm (Huang,
Fan, & Chen, 2014), sample average approximation (Santoso,
Ahmed, Goetschalckx, & Shapiro, 2005), an integration of the above
techniques (Schutz, Tomasgard, & Ahmed, 2009), and many others.

Another theme found in the literature focuses on developing
methods and techniques to minimize feedstock uncertainties and
biomass processing depot costs (e.g., Dutta et al., 2011; Hess,
Wright, Kenney, & Searcy, 2009). Lamers et al. (2015) conducted
a comparison of depot costs and advantages across bio-refinery
supply chains by applying techno-economic analysis of decentral-
ized biomass processing depots. Similarly, Bals and Dale (2012)
established a flexible techno-economic model of local biomass pro-
cessing depots (LBPD) that could assess profitability in multiple
scenarios of biomass processing with different technologies.
Eranki et al. (2011) in another study, explored the concepts of
regional biomass processing depots, their features, benefits and
potential challenges. Argo et al. (2013) indicated that supply sites,
depots and bio-fuel markets can be constructed in different sites
including lower yield areas. With another study, Carolan, Joshi,
and Dale (2007) conducted a technical and financial feasibility
analysis of distributed bioprocessing using regional biomass pre-
processing depots to minimize the transportation, transaction
and storage cost of feedstock. Along the same line, Eranki and
Dale (2011) extended the previous study by performing a compar-
ative life cycle assessment (LCA) of distributed and centralized bio-
mass processing systems. Another study by Ng and Maravelias
(2015) proposed a mixed-integer non-linear programming model
to solve the capacity and inventory planning problem of biofuels
supply chain including depots. The authors further developed in
Ng and Maravelias (2017) a mixed-integer linear programming
(MILP) model for biomass selection and allocation, technology
assortment, and capacity planning at regional depots. An optimiza-
tion model considering RBPDs that explicitly integrates resiliency
in the objective function for maximizing profit is developed by
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Maheshwari, Singla, and Shastri (2017). Based on some heuristics
rules, Li, Li, Varbanov, and Liu (2017) exploited the applications
of the distance potential (sum of the distance from the source to
demand point or sum of the distance from the depot to demand
point) to the design of regional biomass supply chains and solving
vehicle routing problem. Stemming from a review of the literature,
Table 1 provides a synthesis of the current themes in the biomass
supply chain literature. These general themes serve as a baseline in
developing the proposed model.

1.1.2. Current gaps in the literature
After surveying the literature two significant gaps are identified

and need to be addressed to improve and foster the body of knowl-
edge in biomass supply chain network. These gaps are:

� No optimization framework is proposed in the literature to
design amultipurpose pellet processing depot-based biomass sup-
ply chain network considering the complex interactions that
exist between consumer markets (e.g., coal plants, bio-
refineries) and depots.
� Lack of research studied the impact of feedstock seasonality and
uncertainty on bio-fuel markets and biomass consumer markets
(e.g., coal plants) with different locations and configuration of
depots.

In summary, this study proposes a two-stage stochastic mixed-
integer linear programming (MILP) model to design and manage a
sustainable multi-purpose pellet processing depots under feed-
stock seasonality and uncertainty. The design of the proposed
stochastic model should be robust to include bio-refineries and
other related markets such as pulp and paper industries, animal
feed industries, and coal plants. We seek to identify the complex
interactions that exist between the sustainable multi-purpose
Table 1
Current themes of the bio-fuel supply network literature.

Authors General themes

An et al. (2011) and Huang et al.
(2010)

Development of models that
integrate strategic as well as tactical
level decisions pertaining to biomass
supply chain network

Eksioglu et al. (2009), Xie and Ouyang
(2013), Roni et al. (2014), and
Memisoglu et al. (in press)

Development of deterministic
models to handle supply chain
drivers (facility and transportation
decisions)

Kim et al. (2011), Gebreslassie et al.
(2012), Awudu and Zhang (2013),
and Marufuzzaman et al. (2014)

Development of stochastic biofuel
supply chain models to understand
network complexities and
uncertainties

Li et al. (2015), Marufuzzaman et al.
(2016), and Poudel et al. (2016b)

Emphasis on the need to study
facility reliability and network
sustainability in bio-fuel supply
chain

Atamturk and Zhang (2007),
Barbarosoglu and Arda (2004),
Kara and Onut (2010), and Simic
(2016)

Development of two-stage stochastic
models to study general
characteristics of supply chain
network (i.e., commodities and
management of bio fuel supply
network)

Hess et al. (2009), Dutta et al. (2011),
Eranki et al. (2011), and Eranki
and Dale (2011)

Development of economic models to
minimize depot costs, feedstock
uncertainties to improve bio-fuel life
cycle cost

Lamers et al. (2015), Bals and Dale
(2012), and Carolan et al. (2007)

Implementation of technologies into
the bio-fuel supply chain network

Ng and Maravelias (2015, 2017) Development of non-linear models to
handle capacity and inventory
planning decisions in biofuel supply
chain network
pellet processing depots with different biomass consumer markets
by developing a real world case scenario. Further, experiments
such as impact of biomass supply variations and stochasticity,
emission policies and quotas are made to understand the impact
of these key parameters on a multi-purpose depot based biomass
supply chain network. All the experimental results are visualized
and validated by developing a real-world case study using data
from the states of Mississippi and Alabama.

We realized that solving this proposed depot-based biomass
supply chain network model is challenging due to the presence
of NP-hardness facility location problem structure. Therefore, we
propose a hybrid decomposition algorithm that combines Sample
Average Approximation with an enhance Progressive Hedging
(PH) algorithm to solve this challenging problem. The PH algorithm
is enhanced through the application of rolling horizon and variable
fixing techniques. Computational experiments reveal that the pro-
posed decomposition algorithm is capable of solving realistic size
problem instances with high quality in a reasonable amount of
time. The insights gained from the computational experiments
can lead to recommendations to help decision makers achieve a
more sustainable, economic, and environmentally-friendly feed-
stock supply chain network.

This paper is organized as follows: Section 2 presents the two-
stage stochastic programming model formulation; Section 3 outli-
nes the developed hybrid solution approach to solve the proposed
optimization model, and Section 4 describes the results deduced
from a series of performed computational experiments. The paper
concludes with future research and implications.
2. Problem description and model formulation

The main objective of this paper is to build a two-stage stochas-
tic programming model to aid the design and management of sus-
tainable pellet processing depots so that they can meet multiple
market demands while taking into account the stochastic nature
of the feedstock supply. The problem consists of selecting a set of
depots among candidate locations and determining the routes of
feedstock flow from various supply sites to different market loca-
tions. The mathematical model can minimize total system costs
and reduce carbon emissions. In the two-stage stochastic program-
ming model formulation, the first-stage, which should occur prior
to the realization of any random events, is to decide from among
the possible candidates the one with the most promising location
and capacity to open Biomass Processing and Densification Depots
(BPDDs). After the first-stage decisions are made, the random
events are realized and the second-stage decisions such as the cost
of procuring, storing, and transporting biomass from feedstock
supply sites to markets are taken. The object of the model is to
minimize the first-stage and expected second-stage costs across
all possible feedstock supply scenarios for the biomass supply
chain network. Fig. 4 illustrates the structure of a simplified BPDDs
supply chain network consisting of three supplier sites, three
depots, and four markets. The mathematical model is described
below.

Let GðN;AÞ, denotes a logistics network where N is the set of
nodes and A is the set of arcs. Set N consists of the set of harvest-
ing sites I, the set of candidate depots J, and the set of markets
K, i.e., N ¼ I [J [K. In order to distinguish between different
feedstock harvesting sites, set I further partitioned into three dif-
ferent subsets: Iw represents the set of nodes supplying forest
residues; Ic represents the set of nodes supplying corn-stover;
Im represents the set of nodes supplying miscanthus and
I ¼ Iw [Ic [Im. Similarly, setA can be partitioned into two dis-
joint subsets i.e., A ¼A1 [A2 whereA1 represents the set of arcs
connecting harvesting sites I with depots J and A2 represents



Fig. 4. Network representation of a feedstock supply chain.
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the set of arcs connecting depots J with markets K. Locating a
depot of capacity l 2L of type m 2M at each location j 2 J costs
a fixed set-up cost wlmj and generates a production of capacity ccaplmj

and holding capacity hcap
lmj . Transportation distances along arcs

ði; jÞ 2A are relatively short; therefore, trucks are preferred to ship
biomass along these arcs and its unit transportation costs are
denoted by cbijt and cjkt . Let B represent the set of different feed-
stock types (e.g., forest residues, corn-stover, and miscanthus)
and T, the set of time periods. Finally, X denotes the sample space
of the random event where x 2 X defines a particular realization.

Let sxbit denote the amount of biomass of type b 2 B available in
harvesting site i 2 I at time t 2T under scenario x 2 X and dkt as
the demand in each market k 2K which is required to be met at
time period t 2T. The proposed model assumes that the unmet
demand for feedstock at each market location k 2K can be satis-
fied with a substitute product by paying a penalty cost of pkt . The
penalty cost implies that if the cost of delivering feedstock through
the internal supply chain exceeds this threshold cost, then the
demand for feedstock will be satisfied through the substitute prod-
uct. We nowmake the following assumptions to simplify our mod-
eling approach:

Assumption 1. The physical structure of a supply chain consists of
feedstock harvesting, collection and storage by the individual
farmer, individual farmer or farmers co-op societies, transporting
the raw materials to the depot, and depot conversion of the low
density biomass into more stable densified products (increase bulk
density) and delivering it to different markets.
Assumption 2. We hypothesize that CPP will process forest resi-
due that will be transported to the depot in chip format (2–3 in.)
for coarse size reduction. Processed forest residue from CPP depot
can be supplied to all markets but animal feed markets.
Assumption 3. We have considered that an HMPP depot is suit-
able to handle the high moisture generated from herbaceous bio-
mass (e.g., corn-stover, miscanthus) since it comes to the depot
in a bale format. Processed corn-stover and miscanthus from HMPP
depots serves all markets except animal feed.
Assumption 4. In the proposed model, the AFEX depot can also
process corn-stover and miscanthus since AFEX pretreatment
increases the glucan and xylan conversion making the biomass
more beneficial as a commercial product to supply for all types
of markets.
Assumption 5. Transportation distances along arcs are relatively
short; therefore, trucks are preferred to ship biomass along these
arcs.
Assumption 6. The proposed model assumes that the unmet
demand for feedstock at each market location can be satisfied with
a substitute product by paying a penalty cost. The penalty cost
implies that if the cost of delivering feedstock through the internal
supply chain exceeds this threshold cost, then the demand for
feedstock will be satisfied through the substitute product.
Assumption 7. If there is an overflow in biomass supply (i.e., high
realization) and the depot owners do not need to purchase them
all, it is assumed that the unsold biomass will be considered as
‘‘lost” sale from the farmers’ side.

Following these notations, we summarize the sets and input
parameters for the two-stage stochastic programming formula-
tion:

Sets:

� Iw: set of suppliers for forest residues
� Ic: set of suppliers for corn-stover
� Im: set of suppliers for miscanthus
� I: set of all feedstock supply sites, i.e., I ¼ Iw

S
Ic
S
Im

� B: set of feedstock types (b1 for forest residues, b2 for corn-
stovers, b3 for miscanthus, i.e., B ¼ fb1; b2; b3g)
� Jw: set of CPP depots
� Jc: set of HMPP depots
� Jm: set of AFEX depots
� J: set of all depots, i.e., J ¼ Jw

S
Jc

S
Jm

� M: set of depot types (M1 for CPP which process only forest
residues, M2 for HMPP which process corn-stover and miscant-
hus, M3 for AFEX which also process corn-stovers and miscant-
hus, i.e., M ¼ fM1;M2;M3g)
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� Kb: set of markets for bio-refinery
� Kc: set of markets for coal industries
� Kp: set of markets for pulp and paper industries
� Ka: set of markets for animal feed industries
� K: set of all market, i.e., K ¼Kb

S
Kc

S
Kp

S
Ka

� T: set of time periods
� L: set of capacities
� X: set of scenarios

Parameters:

� wljm: fixed cost of opening a depot of type m 2M with capacity
l 2L at location j 2 J

� cbijt: unit cost of transporting feedstock of type b 2 B along arc
ði; jÞ 2A1 at time period t 2T

� cjkt: unit cost of transporting densified biomass along arc
ðj; kÞ 2A2 at time period t 2T

� sxbit: amount of feedstock of type b 2 B available at site i 2 I in
time period t 2T under scenario x 2 X
� dkt: feedstock demand in market k 2K at time period t 2T

� cslmj: feedstock storage/handling capacity of size l 2L for depot
type m 2M in location j 2 J

� cplmj: densified feedstock production capacity of size l 2L for

depot type m 2M in location j 2 J

� hcap
lmj : feedstock holding capacity of size l 2L for depot type

m 2M at location j 2 J

� rbit: unit procurement cost for feedstock of type b 2 B in loca-
tion i 2 I at time period t 2T

� hjt: unit depot holding cost in depot j 2 J at time period t 2T

� pjt: unit densified feedstock production cost for depot type
m 2M located at j 2 J in time period t 2T

� c: average expected cost of carbon credits ($/ton)
� e1bijt: emission due to per unit feedstock of type b 2 B transport-
ing from supply site i 2 I to depot j 2 J in time period t 2T

� e2bjt: emission due to per unit of densified feedstock of type

b 2 Bstored in location j 2 J at time period t 2T

� e3jkt: emission due to per unit feedstock transporting from depot
in location j 2 J to market k 2K at time period t 2T

� /b: conversion rate from feedstock (tons/tons) to densified feed-
stock of type b 2 B

� ab: deterioration rate of feedstock of type b 2 B

� CO2t: maximum amount of carbon dioxide ðCO2Þ (in tons) that
are permitted to emit in time period t 2T (allocated by the
government)
� pkt: unit penalty cost of not satisfying market demand at loca-
tion k 2K in time period t 2T

� qx: probability of scenario x 2 X

Decision variables:

� Ylmj: 1 if a depot typem 2M of capacity l 2L is opened in loca-
tion j 2 J; 0 otherwise
� Hx

bjt: amount of feedstock of type b 2 B stored in location j 2 J

at time period t 2T under scenario x 2 X
� Xx

bijt: amount of feedstock of type b 2 B transported from supply
site i 2 I to depot j 2 J at time period t 2T under scenario
x 2 X
� Xx

jkt: amount of densified biomass transported from location
j 2 J to market k 2K at time period t 2T under scenario
x 2 X
� Wx

bjt: amount of feedstock of type b 2 B processed in location
j 2 J at time period t 2T under scenario x 2 X
� COx
2t: amount of carbon dioxide ðCO2Þ that is currently emitted

(in tons) at time period t 2T under scenario x 2 X
� Ux

kt: amount of biomass shortage in market k 2K at time period
t 2T under scenario x 2 X

We now introduce the following first and second-stage decision
variables for the proposed two-stage stochastic programming
model formulation. The first stage decision variables
Y :¼ fYlmjgl2L;m2M;j2J determine the size, type, and location to open
a depot, i.e.,

Ylmj ¼
1 if a depot of size l of type m is used at location j

0 otherwise;

�
The second-stage decision variables

X :¼ fXx
bmntgb2B;ðm;nÞ2A;t2T;x2X denote the flow of feedstock of type

b 2 B along each link ðm;nÞ 2A of the network at time period
t 2T under scenario x 2 X;H :¼ fHx

bjtgb2B;j2J;t2T;x2X decide the

amount of feedstock stored in depot j 2 J at time period t 2T

under scenario x 2 X;W :¼ fWx
bjtgb2B;j2J;t2T;x2X decide the amount

of feedstock of type b 2 B processed at depot j 2 J in time period
t 2T under scenario x 2 X, and finally U :¼ fUx

ktgk2K;t2T;x2X
decide the amount of feedstock shortage at market location
k 2K in time period t 2T under scenario x 2 X. With this, we
are now ready to formulate the following two-stage stochastic
mixed-integer linear programming model referred to as [DP]:

½DP�Minimize
Y;X;H;W;U
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þ
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j2J

Xx
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x
bjt 8j2J; t2T; x2X ð5ÞX

b2B
Wx

bjt 6
X
l2L

cslmjYlmj 8m2M; j2J; t2T; x2X ð6ÞX
k2K

Xx
jkt 6

X
l2L

cplmjYlmj 8m2M; j2J; t2T; x2X ð7ÞX
j2J

Xx
jktþUx

kt ¼ dkt 8k2K; t2T; x2X ð8ÞX
l2L

X
m2M

Ylmj 61 8j2J ð9Þ

Ylmj 2f0; 1g 8l2L; m2M; j2J ð10Þ
Xx

bijt; X
x
jkt; H

x
bjt; W

x
bjt P0 8b2B; i2I; j2J; k2K; t2T; x2Xð11Þ

In [DP], the object of the model is to minimize both the cost of
the first-stage and the expected value of the random second-stage.
The first term of the objective function minimizes the total set-up
cost of establishing the depots. The second term represents the
cost of routing feedstock from supply sites to depots along with
procurement cost of feedstock at the supplier sites. The third term
represents the cost of routing feedstock from depots to markets
along with pellet production cost at depot locations. The fourth
term of the objective function represents the cost of storing
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densified feedstock in the supply chain network. The last term of
the objective function is the penalty cost for feedstock demand
shortage.

Constraints (2) limit the availability of feedstock supply of type
b 2 B at site i 2 I in time period t 2T and under scenario x 2 X.
Constraints (3) enforce flow-conservation at depot pellet process-
ing site j 2 J. Constraints (4) limit the amount of feedstock that
can be stored in a depot pellet processing site j 2 J. Constraints
(5) limit the amount of densified feedstock that can be produced
in a depot pellet processing site j 2 J. Constraints (6) indicate that
the amount of feedstock processed in depot pellet processing site
j 2 J is limited by the facility capacity cslmj. Constraints (7) indicate
that the amount of feedstock shipped in market k 2K is limited by
the facility capacity cplmj. Constraints (8) indicate that the demand
for feedstock must be satisfied either through the supply chain net-
work or through the substitute product. Constraints (9) ensure that
at most one depot pellet processing site of capacity l 2L is oper-
ating at a particular location j 2 J. Finally, constraints (10) are
the binary constraints and (11) are the standard non-negativity
constraints.

Although the key objective for model [DP] is to minimize cost,
with the increase in greenhouse gas (GHG) emissions, it is also
imperative for decision makers to reduce CO2 emissions from the
supply chain network. To have a more viable model [DP] is
extended to [EDP] where we introduce a carbon trading mecha-
nism that allows the decision makers to sell or buy carbon credits
while monitoring emissions from the supply chain network. We
denote COx

2t as amount of carbon dioxide ðCO2Þ that is currently
emitted (in tons) at time period t 2T under scenario x 2 X. Let,
e1bijt denote emissions due to per unit feedstock of type b 2 B trans-
porting from supply site i 2 I to depot in location j 2 J at time
period t 2T; e2bjt denotes emissions due to per unit of densified
feedstock of type b 2 B stored in location j 2 J at time period
t 2T; e3jkt denotes emissions due to per unit densified biomass
transporting from depot in location j 2 J to market k 2K at time
period t 2T; and, CO2t denotes the maximum amount (in tons) of
carbon dioxide ðCO2Þ that can be emitted per allotment by the gov-
ernment. The MILP formulation [EDP] for the supply chain net-
work can be stated as follows:
½EDP� Minimize
Y;X;H;W;U
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Subject to (2)–(11), and
X
b2B

X
i2I

X
j2J

e1bijtX
x
bijt þ

X
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X
j2J

e2bjtH
x
bjt þ

X
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X
k2K

e3jktX
x
jkt ¼ COx

2t

8t 2T; x 2 X ð13Þ
COx

2t P 0 8t 2T; x 2 X ð14Þ
The current objective function accounts for carbon emissions

cost due to carbon trading in addition to investment, production,
transportation, procurement,and holding costs as described in
model [DP]. Constraints (13) calculate the CO2 emissions across
the feedstock supply chain network and constraints (14) are stan-
dard non-negativity constraints.
3. Solution approach

In this section, the solution techniques used to solve the [EDP]
model are discussed. For a single scenario and a single time period
i.e., setting jXj ¼ 1 and jTj ¼ 1, we can show that the problem
[EDP]] is actually a special case of an uncapacitated facility loca-
tion problem known as NP-hard problem. Therefore, commercial
solvers such as CPLEX/GUROBI fails to solve any large-scale of such
problem (Magnanti & Wong, 1981). To overcome this challenging
computational problem, a hybrid sampling based decomposition
algorithm that combines Sample Average Approximation method
(SAA) with enhanced Progressive Hedging algorithm is proposed.
The techniques used to enhance the Progressive Hedging algorithm
are local and global adjustment techniques and a rolling horizon
algorithm. The aim is to generate high quality feasible solution
for problem [EDP] in a timely fashion. Details about the hybrid
sampling based decomposition algorithm can also be found in
Poudel et al. (2016a).

3.1. Sample average approximation

The availability and quantity of feedstock varies from one year
to another requiring consideration of large number of scenarios
addressing the available feedstock supply in order to develop a
two-stage stochastic programming model. However, evaluating
large number of scenarios by the model will increase the size of
the problem and thus pose significantly computational challenges
in solving model [EDP]. To remedy this problem, a sampling tech-
nique commonly known as the Sample Average Approximation
(SAA) method is employed to reduce the computational burden
in solving model [EDP]. SAA is used extensively to solve large scale
supply chain network flow related problems, such as Verweij,
Ahmed, Kleywegt, Nemhauser, and Shapiro (2003), Santoso et al.
(2005), and others. Interested readers may refer to the works of
Kleywegt, Shapiro, and Homem-De-Mello (2001) for the proof of
convergence properties of SAA and Norkin, Pflug, and
Ruszczynski (1998), Norkin, Ermoliev, and Ruszczynski (1998),
Shapiro (2005), Mak, Morton, and Wood (1999) for the evaluation
of developed statistical inference (validation and error analysis,
stopping rules), easily amendable to variance reduction techniques
and ideal for parallel computations of SAA. In SAA, a sample
x1;x2; . . . ;xN of N realization of the random vectorx is generated
from X according to a probability distribution P and they are
solved repeatedly until a pre-specified tolerance gap is achieved.
After generating the scenarios (e.g., N scenarios), the model
[EDP], defined by Eq. (12) subject to constraints (2)–(11), (13)
and (14), is approximated by the following SAA problem:
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As the sample size increases the optimal solution of (15), eYN ,
and the optimal value vN , converge with probability one to an opti-
mal solution of the original problem [EDP] (Kleywegt et al., 2001).
Assuming that the SAA problem is solved within an absolute opti-
mality gap d P 0, we can now estimate the sample size N needed
to guarantee an �-optimal solution to the problem with probability
at least equal to ð1� aÞ as:
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N P
3r2

max

ð�� dÞ2
jLjjMjjJjðlog 2Þ � logað Þ ð16Þ

where � > d; a 2 ð0;1Þ and r2
max is a maximal variance of certain

function differences (Kleywegt et al., 2001). Sample size estimation
using Eq. (16) is too conservative for practical applications. Thus,
one can choose a sample size N as a trade-off between the solution
quality obtained by solving (15) to the original problem [EDP] and
the computational burden needed to solve it. In each iteration of the
algorithmic step, SAA provides a valid statistical lower and upper
bound for the original problem [EDP] and the process terminates
when the gap between the estimators falls below a pre-specified
threshold value. The main steps of the Sample Average Approxima-
tion (SAA) approach can be explained as follows.

1. Generate M independent supply scenarios of size N i.e.,
fs1mðxÞ; s2mðxÞ; . . . ; sNmðxÞg; 8m ¼ 1; . . . ;M, where s ¼ fsxbit;
8b 2 B; i 2 I; t 2T; x 2 Xg and solve the corresponding
SAA:
Minimize
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2. Compute the average of the optimal solutions obtained by solv-
ing all SAA problems, �vN

M and variance, r2
�vN
M
obtained in Steps 1

as follows:
�vN
M ¼

1
M

XM
m¼1

vm
N

r2
�vN
M
¼ 1
ðM � 1ÞM

XM
m¼1

vm
N � �vN

M

� �2
The �vN

M is an unbiased estimator of ½EDP� which is the expected
optimal objective function value of the sample problems. Let vH

denote the optimal objective function value of the original prob-
lem. Since E½v� 6 vH, the �vN

M provides a statistical lower bound
on the optimal objective function value for the original problem.

3. Select a feasible first-stage solution obtained from Step 1 i.e.,

one of Ŷm
N and solve the original problem using a reference sam-

ple N0 as follows:
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The estimator ~gN0 ðeY Þ serves as an upper bound for the problem
[EDP] and will be updated in each iteration if the value obtained
is less than the value of the previous iteration. We now generate
a large set of feedstock supply scenarios N0, i.e., fs1ðxÞ; s2ðxÞ;
. . . ; sN

0 ðxÞg; 8n ¼ 1; . . . ;N0. Typically, sample size N0 is chosen
much larger than the sample size N in the SAA problems i.e.,

N0 � N. We can estimate the variance of ~gN0 ðeY Þ as follows:

r2
N0 ðeY Þ¼ 1

ðN0 �1ÞN0
XN0
n¼1

X
l2L

X
m2M

X
j2J

wlmj
eY lmjþ

X
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QðY;nÞÞ� ~gN0 ðeY Þ
( )2
where QðY;nÞ represents the solution of the second-stage
problem.

4. Compute the optimality gap (gapN;M;N0 ðeY Þ) and its variance (r2
gap)

using the estimators calculated in Steps 2 and 3.
gapN;M;N0 ðeY Þ ¼ ~gN0 ðeY Þ � �vN
M

r2
gap ¼ r2

N0 ðeY Þ þ r2
�vN
M

3.2. Progressive hedging

In Step1, the Sample Average Approximation algorithm requires
solving a two-stage stochastic programming model of N scenarios.
However, the problem is still considered challenging due to the
memory and computational time restrictions in solving N scenario
subproblems. Often, decomposition based methods are used to
divide the problem into smaller and more manageable subprob-
lems (Rockafellar & Wets, 1991), which motivates us to solve each
subproblem of the SAA problem using a Progressive Hedging Algo-
rithm (PHA). The PHA proceeds by applying a scenario decomposi-
tion technique based on the augmented Lagrangian relaxation
scheme to solve a number of individual scenario subproblems
and finally aggregate the individual scenario solutions. PHA has
proven the first rigorous algorithmic procedure that has been suc-
cessfully applied to a number of broad application areas such as
financial planning (Mulvey & Vladimirou, 1991), surgery planning
(Gul, Denton, & Fowler, 2015), and others. Interested readers can
review the studies conducted by Wallace and Helgason (1991).

Constraints (4), (6), and (7) in ½EDP� link the first-stage decisions
with the second-stage decision variables. These constraints do not
allow problem (17) to be separable by scenarios. To remedy this
problem, we create a copy of fYn

lmjg8l2L;m2M;j2J;n2N 2 f0;1g, of the
first-stage variables for each scenario n 2N. Problem (17) can
now be rewritten as follows:
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Subject to (2), (3), (5), (8), (11), (13), (14), andX
b2B

Hn
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Constraints (23) are referred to as nonanticipativity constraints

which link the first and second-stage decision variables and force
all the scenarios to yield the same first-stage decision variable
making the model not separable by scenarios. To make the
model separable by scenarios and apply Lagrangian relaxation,
we need to rewrite the nonanticipativity constraints. Letting
fYlmjg8l2L;m2M;j2J 2 f0;1g be the ‘‘overall design vector”; the fol-
lowing constraints are equivalent to (23):

Yn
lmj ¼ Ylmj 8l 2L; m 2M; j 2 J; n 2N ð25Þ

Ylmj 2 f0;1g 8l 2L; m 2M; j 2 J ð26Þ



Initialize, r  1; �; fkn;rlmjg8l2L;m2M;j2J;n2N  0;rr  r0

Yr
lmj  0

terminate  false
while (terminate ¼ false) do

for n ¼ 1 to N
Solve ½EDPðPHAÞ� and obtain

fYn;r
lmjg8l2L;m2M;j2J;n2N

end for
Calculate the consensus parameter:
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if ðr > 1Þ then
Update the lagrangian parameter:
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Update the penalty parameter:
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end if
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lmj Þ8l2L;m2M;j2J 6 �Þ then

terminate  true
end if
r  r þ 1

end while
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Following the decomposition technique proposed by
Rockafellar and Wets (1991), we relax constraints (25) using an
augmented Lagrangian strategy and obtain the following objective
function:
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where fknlmjg8l2L;m2M;j2J;n2N, defines the Lagrangian multipliers for

the relaxed constraints and r defines the penalty ratio. Given the
binary requirement of the design variables, fYn

lmjg8l2L;m2M;j2J;n2N

and fYlmjg8l2L;m2M;j2J the quadratic term
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Then the objective function can be reduced as follows
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The last two terms of the objective function become constant
for a given overall design fYlmjg8l2L;m2M;j2J. This allows the sub-
problems to be decomposable by scenarios n 2N, and the overall
problem can be formulated as follows:
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Here, fkn;rlmjg8l2L;m2M;j2J;n2N and rr denote the Lagrangian multi-

pliers and penalty parameter of the progressive hedging algorithm,
respectively which are updated at each iteration r. The general idea
of the basic Progressive hedging algorithm is to solve N determin-
istic [EDP(PHA)] problem and obtain the consensus parameter
fYr

lmjg8l2L;m2M;j2J. If the gap between the binary variable Yn;r
lmj and

the consensus parameter Yr
lmj falls below a threshold value � (i.e.,

� ¼ 0:001) for each l 2L;m 2M; j 2 J then the algorithm termi-
nates; otherwise, the value of kn;rlmj and rr are updated using Eqs.
(41) and (42) and the process continues.

kn;rlmj  kn;r�1lmj þ rr�1ðYn;r
lmj � Yr�1

lmj Þ 8l 2L; m 2M; j 2 J ð41Þ
rr  arr�1 ð42Þ
where a > 1 is a given constant and r0 is set to a fixed positive
value to ensure that rr !1 as the number of iteration r increases.
Moreover, kn;0lmj is set to zero for each scenario n 2N. Pseudo-code of
the basic progressive hedging algorithm is provided in Algorithm 1.

Algorithm 1. Progressive Hedging Algorithm
Termination Criteria: The Progressive Hedging algorithm ter-
minates when one of the following condition is satisfied:

� 1
N

PN
n¼1
P

l2L;m2M;j2J;n2NjYn;r
lmj � Yr

lmjj 6 �; where � is a pre-
specified tolerance gap
� 10 consecutive non-improvement iterations
� Maximum iteration limit is reached (i.e., itermax ¼ 100)
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� Maximum time limit is reached (i.e., timemax = 10,800 CPU
seconds)

3.3. Enhancing progressive hedging algorithm

We have observed from the initial computational experimenta-
tion that Progressive Hedging algorithm shows faster convergence
for small and medium network size problems. However, for a suf-
ficiently large network it takes an extensive amount of time for
convergence. This motivates us to explore additional enhancement
techniques to improve the convergence and stability of the PHA
algorithm. Hence, we explore additional enhancement techniques
to solve the problem faster. The following subsection discusses
some PHA enhancement techniques that we have investigated in
an attempt to make the model ½EDPðPHAÞ� solve faster.

3.3.1. Penalty parameter updating
Prior studies such as Chen and Fan (2012) and Huang et al.

(2014) show that setting the value of r highly impacts the quality
of the solution produced by the Progressive Hedging algorithm. For
instance, the algorithm converges faster to a sub-optimal solution
for a significantly large value of r. However, the algorithm takes a
longer time to converge if the r is set to a conservative value. As
inspired by Hvattum and Lokketangen (2009), we dynamically
adjust the value of r over iterations based on the computational
performance obtained from prior iterations of the PHA algorithm.
Let Dr

1 and Dr
2 define the indicators of the convergence rates in

the dual space and in the primal space, respectively, then, the pen-
alty value can be updated as follows:

Dr
1 ¼

X
l2L

X
m2M

X
j2J
ðYr

lmj � Yr
lmjÞ

2 ð43Þ

Dr
2 ¼

X
l2L

X
m2M

X
j2J
ðYr

lmj � Yr�1
lmj Þ

2 ð44Þ

rr ¼
hrr�1 if Dr

1 � Dr�1
1 > 0

1
hr

r�1 else if Dr
2 � Dr�1

2 > 0
rr�1 otherwise

8><>: ð45Þ

where h represents a constant parameter, which value is set to
h > 1.

3.3.2. Heuristic strategy
As inspired by Crainic, Fu, Gendreau, Rei, and Wallace (2011),

we have used two heuristic strategies that modify the fixed cost
of opening depot facilities in problem [EDP(PHA)] to further
enhance the performance of the Progressive Hedging algorithm.
The first strategy, called global heuristics modifies the fixed cost
of using a depot facility at the end of each iteration. The second
strategy, referred to as local heuristics, adjusts the fixed cost of
opening depot within the scenario level.

Remember that the problem [EDP(PHA)] is composed of a series
of N deterministic sub-problems. At the end of each iteration r in
Algorithm 1, we can obtain the values of the consensus parameter
fYr

lmjg8l2L;m2M;j2J which provide an indication of how many times

a depot facility was opened in the previous iterations. A higher
value of Yr

lmj signifies that the depot j 2 J of capacity l 2L of type
m 2Mwas opened in most of the previous iterations. Conversely, a
lower value of Yr

lmj indicates that the depot j 2 J of capacity l 2L of
type m 2M was not a favorable decision in most of the previous
iterations. Assume c and c are the two parameters that define the
upper and lower than threshold value. Therefore, if the value of
Yr

lmj is greater than the threshold value c, then lowering the fixed
cost of opening the depot will motivate the subproblems to use
the facility in the coming iterations. Similarly, if the value of Yr
lmj

is lower than the threshold value c, then increasing the fixed cost
of opening the depot will avoid the subproblems to open the facility
in the coming iterations. This will fix the decisions of opening few
depot facilities to either one or zero and thus will help to reduce
the size of the problem. The adjustment strategy is shown below:

wr
lmj ¼

dwr�1
lmj if Yr�1

lmj < c
1
d w

r�1
lmj if Yr�1

lmj > c

wr�1
lmj otherwise

8>><>>: ð46Þ

where wr
lmj represents the modified fixed cost of opening a depot of

capacity l 2L of type m 2M in location j 2 J and at iteration r; c
and c are the two constant parameters whose values are set to
0 < c < 0:3 and 0:7 < c < 1; and d is a constant parameter whose
value is set to d > 1.

The global heuristics strategy discussed above can be pushed
even further to modify the fixed cost of using depots locally within
the scenario level. Crainic et al. (2011) called this the local heuristics
strategy since the modification of the fixed cost only impacts the
subproblem of scenario n at current iteration r. This strategy is
emphasized in modifying the fixed cost of opening the depot at
scenario n 2 N in iteration r if the gap between Yn;r

lmj and Yr
lmj is suf-

ficiently large. The local adjustment strategy applied to Algorithm
1 is as follows:

wn;r
lmj ¼

dwr
lmj if jYn;r�1

lmj � Yr
lmjjP cfar and Yn;r�1

lmj ¼ 1
1
d w

r
lmj if jYn;r�1

lmj � Yr
lmjjP cfar and Yn;r�1

lmj ¼ 0

wr
lmj otherwise

8>><>>: ð47Þ

where wn;r
lmj represents the modified fixed cost of opening a depot of

capacity l 2L of type m 2M at location j 2 J under scenario
n 2 N and at iteration r; cfar is a threshold at which point a local
adjustment to the fixed cost of opening a depot is applied and is
set to 0:5 < cfar < 1; and d is a constant parameter whose value is
set to d > 1.

3.3.3. Rolling horizon heuristic strategy
The resulting [EDP(PHA)] problem is a multi-period determin-

istic facility location problem. For a large number of time periods,
the hybrid algorithm discussed earlier still takes a significant
amount of time to solve the problem. This motivates us to explore
an additional heuristic approach known as Rolling Horizon [RH].
This approach decomposes multi-time period [EDP(PHA)] prob-
lems into a series of small subproblems with few consecutive time
periods and the algorithm terminating when all the subproblems
are investigated (Balasubramanian & Grossmann, 2004; Kostina,
Guillen-Gosalbeza, Meleb, Bagajewiczc, & Jimeneza, 2011). A
pseudo-code of the [RH] algorithm is provided in Algorithm 2 that
gives readers a better understanding of the working procedure of
this heuristic. Let tr0 define the starting time period of subproblem
r and Rr denote the number of time periods comprised in subprob-
lem r. For each subproblem, we can set a fixed or variable size of Rr

which we initialized to #r where #r is a pre-specified step size for
each r 2 R. The approximating subproblem of the Rolling horizon
algorithm is denoted by [EDP(PHA(r))]. The approximating sub-
problems are solved for each scenario n 2 N by setting the vari-
ables as: (i) fYn

lmjg8l2L;m2M;j2J 2 f0;1g for tr0 6 t 6 tr0 þ Rr , (ii)

0 6 Yn
lmj 6 1 for t > tr0 þ Rr . After solving a subproblem, we fix the

values of Yn;r
lmj ¼ Yn;r�1

lmj ; 8l 2L;m 2M; j 2 J for t < tr0 and update
the step size r. The process continues until all the subproblems
are solved. Fig. 5 represents an example of using the rolling horizon
approach to solve a problem with three time periods.



Fig. 5. Illustration of a rolling horizon
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4. Computational study and managerial insights

This section conducts numerical studies to test the proposed
model [DP] and [EDP] and draws some managerial insights and
recommendations. Mississippi and Alabama have been chosen as
a testing case for this study. All the algorithms are coded in GAMS
24.2.1 (General Algebraic Modeling System, 2013) and executed on
a desktop computer with Intel Core i7 3.50 GHz processor and
16.0 GB RAM. The optimization solver used is ILOG CPLEX 12.6.
The following subsections describe the input parameters used in
the study, conduct a computational study on model [DP] and
[EDP], present results obtained from the case study, draw some
managerial insights, and present the performance of the
algorithms.

Algorithm 2. Rolling Horizon (RH) Heuristic

r  1; tr0 ¼ 0;Rr  #r , terminate  false
while (terminate ¼ false) do

Set:
fYn

lmjg8l2L;m2M;j2J 2 f0;1g for tr0 6 t 6 tr0 þ Rr

0 6 fYn
lmjg8l2L;m2M;j2J 6 1 for t > tr0 þ Rr

Solve the approximate sub-problem ½DPHA� using CPLEX
if(t0 > jTj) then

stop  true
else

Fixing the values of fYn
lmjg8l2L;m2M;j2J for t < tr0

end if
r  r þ 1

end while
Fig. 6. Geographic distribution
4.1. Data description
strategy for a three time period.
4.1.1. Feedstock supply
Mississippi and Alabama are selected as regions of interest for

this research because the three major types of feedstock:forest
residue, corn-stove, and miscanthus are readily available in these
states. The various feedstocks are highly seasonal and are not nec-
essarily available year round. For instance, while forest residues
and miscanthus are available year round except for three months
during the winter (December to February), corn-stover is only
available from September to November. Mississippi and Alabama
produce 3.59 million tons of forest residue, 4.15 million tons of
corn-stover, and 1.07 million tons of miscanthus per year
(Bioenergy Knowledge Discovery Framework, 2016). In total 180
suppliers from Mississippi and Alabama are considered and their
geographic distribution is shown in Fig. 6. The counties that pro-
duce fewer than 2500 tons of forest residue, 5000 tons of corn-
stover, and 5000 tons of miscanthus are excluded from this study.
The average farmgate price of forest residue is set to $30/dt
(Awudu & Zhang, 2013), $40/dt for corn-stover, and $40/dt for mis-
canthus (Bioenergy Knowledge Discovery Framework, 2016).

4.1.2. Feedstock demand
The total annual bio-fuel demand for our test region is set at

225 million gallons per year (MGY) (United States Energy
Information Administration, 2015) which will require 3.17 million
tons of feedstock to supply. We assume that power plants will
replace 6% of coal demand with densified feedstock to produce
renewable electricity. This results in a demand of 2.39 million tons
per year (MTY) of densified feedstock for the States of Mississippi
and Alabama. We further assume that feedstock will fulfill 15% of
the demand for total pulp and paper industries and animal feed
of feedstock supplier sites.
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markets resulting in a demand of 1.35 million tons and 1.03 million
tons on pulp and paper industries and animal feed markets, respec-
tively. We have included a total of 4 bio-refineries, 15 coal-plants,
53 paper-industries, and 38 animal feed markets. Fig. 7 depicts the
geographic distribution for all four markets in Mississippi and
Alabama.

4.1.3. Total investment cost
Various types of equipment such as grinders, hammer mills, and

conveyors are needed to perform the operations in different
depots. The equipment prices used in the analysis are collected
from local dealers. A total of 60 potential CPP and 123 HMPP and
AFEX depot locations are considered. Fig. 8 depicts the location
of potential depots in the regions of Mississippi and Alabama. Con-
sidering the depot capacity of 0.073 million tons per year (MTY),
the total investment costs for CPP and HMPP are about $4.7 million
and $3 million, respectively whereas for AFEX it is $8.2 million
because the AFEX pre-treatment option requires more operational
phases and thus more equipment is needed causing the total
investment cost to rise (Lamers et al., 2015). We consider 3 differ-
ent depot capacities (l = 0.073 MTY, 0.083 MTY, 0.1 MTY). These
costs are estimated based on an equipment lifetime of 30 years;
a discount factor of 10% is assumed.

4.1.4. Transportation cost
We consider that trucks are used to transport the feedstock

from supplier i 2 I to depots j 2 J and from depot j 2 J to market
k 2K. The unit cost for truck transportation cij can be computed as
follows (Huang et al., 2010).
Fig. 7. Geographic distribution
cij ¼
td þ tt

s1

� �
dij

dcap1

þ!1

24 35 8i 2 I; j 2 J

Here, tt indicates transportation cost ($/hr/truckload) which is
time dependent (for instance capital and labor cost), td specifies
the transportation cost ($/mile/truckload) which is distance depen-
dent (for example maintenance, fuel and insurance costs). Both
costs are different along with traveling distance dij. On the other
hand, loading and unloading costs are fixed and do not depend
on traveling costs. All these costs are considered for semi trucks
with average traveling speed (s1) of 40 miles per hour and with a
load capacity (dcap1 ) of 25 tons. Table 2 summarizes all the cost
parameters (Parker et al., 2008).
4.1.5. Emission data
Emission data due to truck transportation (e1bjit; e

3
jkt) is obtained

from GHG Protocol (GHG Protocol, 2015) and is set to 0.297 kg/ton-
mile. Emissions due to per unit of densified feedstock stored (e2jt) in
location j 2 J at time period t 2T for CPP, HMPP, and AFEX is
respectively set to 1.55 lb CO2/kWh, 1.70 lb CO2/kWh, and
1.87 lb CO2/kWh (US Environmental Protection Agency, 2015).
CO2 emissions were calculated as 21.47 lb/gallon of fuel burned
and 0.0155 lb/pound of pellet by considering complete combustion
of diesel fuel (US Environmental Protection Agency, 2015). Note
that all the units are converted to equivalent ton-unit to use them
in Eq. (17).
of feedstock demand cities.



Fig. 8. Potential locations of (a) CPP, (b) HMPP, and AFEX depots.

Table 4
Parameter setting for base case scenario.

Parameters Symbol Value

Number of forest residue supply site jIwj 60
Number of corn-stover supply site jIc j 60
Number of miscanthus supply site jImj 60

Feedstock types jBj 3
Number of potential CPP depots jJwj 60

Number of potential HMPP depots jJc j 120
Number of potential AFEX depots jJmj 120

Depot types jMj 3
Number of bio-refinery jKbj 4
Number of coal plants jKc j 15

Number of pulp and paper industries jKp j 53
Number of animal feed industries jKaj 38

Number of capacities jLj 3
Number of time periods jTj 12

Small scenario N 25
Big scenario N0 500

Number of replication Q 5

Table 2
Unit truck transportation cost.

Costs Parameters Value Unit

Loading/unloading !1 5.0 $/Wet ton
Time dependent tt 29.0 $/hr/truck load

Distance dependent td 1.20 $/mile/truck load
Truck capacity dcap1

25 Wet tons
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4.2. Analyzing the performance of solution algorithms

In this section the computational experience is analyzed using
the proposed solution algorithm introduced in Section 3. For clar-
ification and to facilitate the discussion of our solution approaches,
the following notations are introduced:

� [SAA]: Sample Average Approximation (SAA) algorithm
(described in Section 3.1)
� [SAA + PHA]: Hybrid algorithm where the subproblem of the
[SAA] is solved using Progressive Hedging algorithm (PHA)
(described in Section 3.2)
� [SAA + PHA + HR]: Hybrid algorithm where the subproblem of
the [SAA] is solved using an enhanced Progressive Hedging
algorithm (PHA) (enhancement techniques described in Sec-
tions 3.3.1 and 3.3.2)
� [SAA + PHA + HR + RH]: Hybrid algorithm where the subprob-
lem of the [SAA] is solved using an enhanced Progressive Hedg-
ing algorithm (PHA) (enhancement techniques described in
Sections 3.3.1–3.3.3)

The algorithms are terminated when at least one of the follow-
ing criteria ismet: (a) the optimality gap (i.e., � ¼ jUB� LBj=UB) falls
below a threshold value � ¼ 0:01; (b) the maximum time limit
timemax = 10,800 (in CPU seconds) is reached; (c) the maximum
Table 3
Problem size of the test instances.

Case jIj jJj jKj jLj jBj jMj jTj Binary V

1 60 60 60 3 3 3 4 54
2 60 60 60 3 3 3 8 54
3 60 60 60 3 3 3 12 54
4 180 180 110 3 3 3 4 16
5 180 180 110 3 3 3 8 16
6 180 180 110 3 3 3 12 16
number of iterations itermax = 100 is reached. To terminate the Pro-
gressive Heading algorithm, some additional stopping criteria have
been added and used (as discussed in Section 3.2). The sizes of the
deterministic equivalent problems of our model are presented in
Table 3. The six problem instances reported in Table 3 are generated
by varying the size of jIj; jJj; jKj, and jTj. The columns of the tables
presented in this section (Tables 5 and 6) provide the upper bound,
the optimality gap ð�Þ, the running time of the algorithms ðin secÞ,
and the corresponding number of iterations ðIterÞ. Table 4 demon-
strates the base parameter settings for the initial experimentations.

At this point, we have analyzed the performance of different
enhancement techniques which are used to improve the quality
of the Progressive Hedging algorithm [PHA]. Table 5 shows how
the use of different enhancement techniques can speed up the
ariables Continuous variables Total variables No. of constraints

0 59,524 60,064 121,008
0 119,048 119,588 241,156
0 178,572 179,112 361,164
20 473,484 475,104 953,268
20 946,968 948,588 1,903,116
20 1,420,452 1,422,072 2,852,964



Table 5
Performance of enhancement techniques used in PHA.

Case N [PHA] [PHA + HR] [PHA + HR + RH]

UB GAP (%) CPU (sec) Iter UB GAP (%) CPU (sec) Iter UB GAP (%) CPU (sec) Iter

1 20 66,620,056 11.25 10,800 21 59,632,173 0.85 1951 7 59,674,303 0.92 1152 3
30 63,788,218 7.31 10,800 34 59,572,090 0.75 2932 6 59,566,089 0.74 2134 3
40 87,385,899 32.34 10,800 24 59,710,462 0.98 4521 12 59,668,281 0.91 3041 4

2 20 108,598,375 9.26 10,800 15 99,457,172 0.92 3642 9 99,286,817 0.75 2454 5
30 114,238,541 13.74 10,800 37 99,507,387 0.97 4675 8 99,206,852 0.67 3242 2
40 125,739,653 21.63 10,800 41 99,517,437 0.98 6985 12 99,246,818 0.71 4231 3

3 20 265,698,247 7.28 10,800 24 248,317,120 0.79 4625 8 248,367,189 0.81 3641 4
30 269,594,457 8.62 10,800 21 248,492,450 0.86 8652 13 248,292,093 0.78 5524 5
40 330,190,879 25.39 10,800 19 248,567,667 0.89 9642 12 248,642,929 0.92 7642 4

4 20 839,445,450 10.15 10,800 27 761,475,757 0.95 8512 8 760,400,985 0.81 5451 2
30 860,515,387 12.35 10,800 38 760,707,753 0.85 6023 8 760,554,338 0.83 7541 3
40 938,929,089 19.67 10,800 34 761,475,757 0.95 10,534 11 760,784,484 0.86 9642 3

5 20 954,637,287 8.13 10,800 26 885,168,829 0.92 9658 8 885,079,499 0.91 7651 4
30 978,276,939 10.35 10,800 21 902,753,758 2.85 10,800 8 884,008,946 0.79 9642 5
40 1,302,577,270 32.67 10,800 24 916,623,407 4.32 10,800 7 887,767,259 1.21 10,800 4

6 20 1,139,742,838 13.54 10,800 21 1,056,299,344 6.71 10,800 9 994,571,718 0.92 9634 6
30 1,124,268,863 12.35 10,800 13 1,114,982,641 11.62 10,800 13 994,170,357 0.88 10,432 5
40 1,533,014,403 35.72 10,800 21 1,126,067,487 12.49 10,800 16 1,008,000,878 2.24 10,800 6

Average 616,847,881 16.21 10,800 25.6 528,240,483 2.76 7779 9.7 508,738,324 0.93 6370 3.9
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convergence and improve the quality of the [PHA] algorithm. The
enhancement techniques used are: (i) [PHA + HR] which incorpo-
rates heuristics strategies (described in Section 3.3.2) and penalty
parameter updating techniques (described in Section 3.3.1) in
[PHA] algorithm and (ii) [PHA + HR + RH] which incorporates roll-
ing horizon algorithm (described in Section 3.3.3) with heuristics
strategies (described in Section 3.3.2), and penalty parameter
updating techniques (described in Section 3.3.1) in [PHA] algo-
rithm. We consider six cases and three scenario sizes N =
{20,30,40} to obtain 18 different problem instances.

It can be noted that, the experiments run with CPLEX deplete
available memory in solving all the problem instances described
in Table 5. In any of the experimental results, if the algorithms
are solved in less than the stopping criteria � then the algorithm
with the smallest running time is highlighted. Otherwise, if such
a quality solution is not obtained within the maximum time or
iteration limit then the algorithm with the smallest optimality
gap is highlighted. It is observed from the results that algorithm
[PHA + HR] solves 13 out of 18 problem instances, whereas the
standard Progressive hedging algorithm [PHA] fails to solve any
problem instances by obeying the termination criteria. Results
Table 6
Comparison of different solution approaches.

Case N Q [SAA] [SAA + PH]

GAP (%) CPU (sec) Iter GAP (%) CPU (sec)

5 20 5 0.76 8564 1 0.65 7864
10 6.56 10,800 1 0.73 9754

30 5 8.96 10,800 1 5.42 10,800
10 OOMa – – OOM –

40 5 OOM – – OOM –
10 OOM – – OOM –

6 20 5 0.85 9586 1 0.75 8649
10 OOM – – 0.69 10,362

30 5 OOM – – 4.39 10,800
10 OOM – – OOM –

40 5 OOM – – OOM –
10 OOM – – OOM –

Average 4:28b 9937.5 1.0 2:11b 9704.8

a Out of Memory.
b Instances with (a) did not contribute to average calculation.
indicate that the performance of the algorithm [PHA + HR] can
be enhanced even further by incorporating rolling horizon frame-
work [PHA + HR + RH]. It is observed that algorithm [PHA + HR
+ RH] outperformed [PHA + HR] by solving 16 out of 18 problem
instances by obeying termination criteria. The overall average opti-
mality gap for algorithm [PHA + HR + RH] is 0.93% which is
achieved 1.22 times faster than algorithm [PHA + HR]. We found
that although algorithm [PHA + HR + RH] terminates with an �-
optimal solution, the quality of solution produced by the [PHA
+ HR + RH] algorithm is consistently high (see Table 5).

We further analyze the performance of the proposed algorithms
using problem instances described in Table 3. In Table 6, we present
the results from solving themodel using the algorithms proposed in
Section 3. The problems were solved using Cases 5 and 6 problem
instances obtained from Table 3 with varying sample size N and
replication number Q in the [SAA] algorithm. We set the large sce-
nario N0 = 500 to evaluate the SAA gap. In this table, we do not pre-
sent results obtained from CPLEX because CPLEX deplete available
memory in solving all the problem instances reported in Table 6.
Results indicate that, [SAA] is able to solve only 2 out of 12 problem
instances by obeying the termination criteria. The performance can
[SAA + PHA + HR] [SAA + PHA + HR + RH]

Iter GAP (%) CPU (sec) Iter GAP (%) CPU (sec) Iter

2 0.56 5942 2 0.79 4821 2
4 0.67 6874 1 0.89 5861 1
2 0.76 8971 2 0.92 5442 1
– 3.67 10,800 1 0.81 7996 2
– 0.84 7153 1 0.87 7535 1
– 4.74 10,800 1 0.94 8654 2

2 0.86 7214 1 0.91 6421 1
1 0.87 8965 1 0.76 7825 1
1 0.68 10,354 2 0.96 7241 2
– 4.25 10,800 1 0.87 8694 1
– 5.29 10,800 1 0.91 10,364 1
– 6.86 10,800 1 1.39 10,800 2

1.5 2.50 9181.1 1.4 0.94 7637.5 1.4
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be improved slightly by solving the subproblems of the [SAA] algo-
rithm using [PHA] algorithm. It is observed that algorithm [SAA
+ PHA] is now able to solve 4 out of 12 problem instances by obey-
ing termination criteria. The benefits of using the algorithms
become much more evident when the enhancement techniques
(developed in Section 3.3) implemented in [PHA] algorithm are
used to solve the subproblems of the [SAA] algorithm. The overall
average optimality gap for the [SAA + PHA + HR] algorithm is
reported as 2.50%, with 7 out of 12 problem instances being solved
by obeying termination criteria. On the other hand, the overall aver-
age optimality gap for the [SAA + PHA + HR + RH] algorithm is
reported as 0.94%, with 11 out of 12 problem instances solved in
a less than 1.0% optimality gap within the specified time limit. It
is important to note that algorithm [SAA + PHA + HR + RH] saves
16.81% time over algorithm [SAA + PHA + HR]. In summary, the
[SAA + PHA + HR + RH] algorithm seems to offer consistently high
quality solutions within the experimental range.

4.3. Experimental results

4.3.1. Impact of feedstock supply variation levels on system
performance

The first set of experiments shows how different levels of sup-
ply variation impact the feedstock supply chain network perfor-
mance. We have generated scenarios using Monte Carlo
simulation in which the supply for each period is independent
and varies in the range ½sbitð1� �Þ; sbitð1þ �Þ� for each feedstock
type b 2 B in location i 2 I and at time period t 2T. Note that
sbit represents the mean feedstock supply scenario for each
Fig. 9. Supply chain network decisions under d
feedstock type b 2 B in location i 2 I and at time period t 2T

and we assume that the feedstock supply follows uniform distribu-
tion. We create two realistic scenarios where we set � ¼ 50% and
� ¼ 5% to represent high and low supply variation levels, respec-
tively. Fig. 9 presents the impact of different feedstock supply vari-
ation levels on supply chain network performance. In the
experiment, we set t ¼ 1 as the month of June. Results indicate that
as the level of feedstock supply variability increases the amount of
feedstock transporting between the links ðj; kÞ 2A2 in each time
period t 2T would increase as well. We also observe that to cope
with high feedstock supply variability levels, the depots tend to
store more feedstock during the off production seasons (December
to February) when no feedstock is available. This in turn decreases
the overall shortage quantity of feedstock supply in depot k 2K at
time period t 2T.

Fig. 10 shows the distribution of depot facilities under low and
high feedstock supply variability levels. Results indicate that as the
level of feedstock supply variation increases, the number of depot
facilities also increases. More specifically, the model decides to use
four additional depot facilities to cope with high feedstock variabil-
ity. It is important to note that the facilities are now distributing
their capacities to minimize the overall transportation costs. For
example, in low feedstock variations the model decides to use:
three CPP depots of capacities 0.073 MTY, 0.083 MTY, and 0.1
MTY; two HMPP depots of capacities 0.083 MTY, and 0.1 MTY;
and three AFEX depots of capacities 0.083 MTY, and 0.1 MTY. How-
ever, as the level of variation increases the model decides to use:
four CPP depots of capacities 0.073 MTY, 0.083 MTY, and 0.1
MTY; four HMPP depots of capacities 0.073 MTY, 0.083 MTY, and
ifferent feedstock supply variability levels.



Fig. 10. Impact of feedstock supply variability on network configuration.
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0.1 MTY; and four AFEX depots of capacities 0.073 MTY, 0.083 MTY,
and 0.1 MTY. It is observed that compared to low feedstock supply
variability levels the unit cost of feedstock increases for high vari-
ability about 3.4%. This implies that the feedstock supply variabil-
ity levels highly impact decision making in the feedstock supply
chain network.
Fig. 11. Supply chain network decisions unde
4.3.2. Impact of mean feedstock supply changes on system
performance

The second set of experiments (shown in Fig. 11) show the
impact of feedstock supply mean changes on feedstock supply
chain network performance. There are a number of factors which
impact the feedstock availability in a given region such as,
r different feedstock supply mean levels.



Fig. 12. Impact of mean feedstock supply changes on network configuration for (a) base case, (b) 20% increment of mean supply levels, and (c) 20% decrease of mean supply
levels.
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unexpected natural catastrophe, new initiatives from the govern-
ment to promote cultivation of more feedstock or other related fac-
tors (Marufuzzaman et al., 2016). From Fig. 11, it is evident that if
the supply mean is shifted positively (+20% or +10%) from the base
case, then overall shipment from depot to market will also increase
and vice versa. The same case is valid for feedstock storage over a
time period. We notice that depots tend to store more feedstock
during the off production period from December to February when
none of the feedstock is available to maintain uniformly high
feedstock supply variability levels through the whole year; this
triggers a decrease in the overall shortage of feedstock supply in
market k 2K at time period t 2T.

Fig. 12 presents the number of CPP, HMPP and AFEX depots net-
work configurations for the base case, 20% increment of feedstock
supply levels, and 20% decrease of feedstock supply levels. It is
observed from Fig. 12(a) that three CPP, two HMPP, and three AFEX
depots have been selected for the base case. For a 20% increment of
feedstock supply from the mean levels, the model selects two addi-
tional CPP depots, two HMPP depots, and one AFEX depot (Fig. 12
(b)), whereas for a 20% decrease of feedstock supply from mean
levels, the model decides to close one AFEX depot which has been
selected for the base case (Fig. 12(c)). It is further observed that the
low mean feedstock supply scenario (e.g., �20% feedstock supply
change) increases the unit delivery cost of feedstock by 6.42% from
the base case and alternatively if there exists a high mean feed-
stock supply scenario (e.g., 20% feedstock supply change), the unit
delivery cost could have dropped by 5.78% from the base case.
4.3.3. Performance evaluation of stochastic and deterministic solution
To justify the importance of using a stochastic programming

approach over a deterministic approach, this study solves model
½DP� using both approaches and compares their solutions. To get
the deterministic solution, we use the average biomass supply
sbit ¼ sxbit=jXj where sxbit is obtained from the different supply sce-
narios in the stochastic programming approach. Fig. 13 shows
the comparison of major supply chain decisions with and without
considering feedstock supply uncertainty. It is evident from the
results that an additional 12.49% increase in biomass shipment is
possible in markets to cope with feedstock supply seasonality
and uncertainty. Moreover, the model decides to store 40.9% addi-
tional feedstock at depot facilities between the months of October
(t = 5) to December (t = 7) to maintain a smooth feedstock supply
during the off production seasons. This results in an overall 15.3%
decrease in feedstock shortage quantity which eventually
decreases the total system costs. On average, the unit delivery cost
of feedstock transportation drops by 8.17% if both the feedstock
seasonality and uncertainty are taken into consideration. Fig. 14
demonstrates the network configuration for the deterministic
and stochastic approaches. It is interesting to note that the stochas-
tic programming approach selects almost 33.33% more depot facil-
ities jYj over the deterministic counterpart. This supports the
notion that feedstock supply uncertainty possess a high impact
on feedstock supply chain network decisions and illustrates that
the use of a stochastic solution is superior over a deterministic
solution.



Fig. 13. Impact of stochastic vs. deterministic solution on system performance.

Fig. 14. Network representation with and without considering feedstock supply uncertainty.
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4.3.4. Impact of feedstock supply variation levels with carbon emission
on system performance

To see the impact of feedstock supply variation with carbon
on a transportation network, we conducted a sensitivity analysis
of the model [EDP]. Fig. 15 illustrates the distribution of depot
facilities under low and high feedstock supply variability levels
with carbon emission. It is observed from Fig. 15 that when
the level of feedstock supply variation increases, the number
of different types of depot facilities increases. More specifically,
compared to low feedstock supply variability levels, an addi-
tional CPP depot of capacity 0.083 MTY, three additional HMPP
depots of capacity 0.073 MTY, and two additional AFEX depots



Fig. 15. Impact of feedstock supply variability with carbon emission on network configuration.
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Fig. 16. Impact of carbon cap on feedstock unit price.
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of capacities 0.073 MTY are selected to transport feedstock in
markets in high feedstock supply variability levels. It is observed
that high variation increases the unit cost of feedstock by 6.31%
from the base case. We further notice that for both high and low
variation of feedstock supply, the model decides to select the
depot location near the supply and market location to reduce
carbon emission.

4.3.5. Impact of carbon cap-and-trade mechanism on feedstock price
To recognize the impact of the carbon cap-and-trade mecha-

nism on a feedstock supply chain network, we conducted a series
of experiments changing the carbon cap. For our base, we have
taken the carbon cap to be 10 billion tons per year. We have con-
ducted 5 sets of experiments by setting the carbon cap at 5, 10, 15,
20, and 25 billion tons and keeping the same default setting for
other parameters. Fig. 16 demonstrates that if the carbon credit
is loose, the unit cost of the feedstock will be reduced. However,
as the cap becomes tighter, the unit cost increases because at high
carbon there is an incentive for the facilities to sell carbon credit to
the market. When the carbon cap is loose, the feedstock supply
chain networks can lower overall cost by selling the carbon credit
to the market. On the other hand, as the carbon cap becomes
tighter, the facilities are required to purchase additional carbon
credit to maintain the supply chain activities resulting in higher
supply chain costs. Results indicate that if the carbon cap is loos-
ened from 10 billion tons per year to 25 billion tons per year, the
unit feedstock cost will drop by 6.4%.
4.3.6. Sensitivity analysis of markets demand on system performance
We now present the impact of feedstock demand on the perfor-

mance of the biomass supply chain network. Biomass is primarily
used to fulfill the demands of bio-refineries and coal industries.
However, we consider that processed feedstock (densified bio-
mass) can also serve the demand of the pulp and paper and the ani-
mal feed markets. The results of the sensitivity analysis show that
if the demand for feedstock of bio-refineries and coal industries
decreases then the feedstock will be used by the pulp and paper
industries and the animal feed markets. To perform the analysis,
we conducted four different experiments: (a) 50% decreased
demand of bio-refineries while keeping the demand fixed for the
three other markets, (b) 50% decreased demand of coal industries
while keeping the demand fixed for the three other markets, (c)
50% decreased demand of bio-refineries and coal industries while
keeping the demand fixed for the three other markets, and (d)
50% decreased demand of bio-refineries and coal industries with-
out the other two markets. Fig. 17 demonstrates the network rep-
resentation under these four sets of experiment. It is obvious from
the figure that the decrease in the demand from the bio-refineries
and coal industries has a greater impact on making decisions
related to open depots than the demand from the pulp and paper
and animal feed markets. Specifically, for a 50% decrease in the
bio-refineries demand, the model decides to open two CPP depots,
two HMPP depots, and two AFEX depots (as shown in Fig. 17(a))
and for a 50% decrease in the coal industries demand, the model
decides to open two CPP depots, two HMPP depots, and two AFEX
depots (as shown in Fig. 17(b)). For a 50% decrease in the bio-
refineries and coal industries demand, the model decides to open
only two CPP depots, two HMPP depots, and one AFEX depot (as
shown in Fig. 17(c)). We also observe that for a 50% decrease in
the bio-refineries and coal industries demand and without consid-
ering pulp and paper and animal feed markets, the model decides
to open only one CPP depot and two HMPP depots, while it has not
decided to open any AFEX depots as shown in Fig. 17(d). In sum-
mary, we found that even though the demand of feedstock for
bio-refineries and coal industries is decreased, the densified bio-
mass can also be used to serve the pulp and paper and animal feed
markets alternatively. These results indicate that development of
multi-purpose pellet processing depots has a significant role in sat-
isfying the multiple market demand for feedstock.



Fig. 17. Impact of demand decrease on network configuration by (a) 50% bio-refinery, (b) 50% coal industry, (c) 50% bio-refinery and coal industry, and (d) 50% bio-refinery
and coal industry without the pulp and paper industry and animal feed market.
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5. Conclusion

This paper studies the impact of feedstock supply uncertainty
on the design and management of supply chain networks in
multi-purpose pellet processing depots. This study is further
extended to [EDP] by incorporating carbon emissions into consid-
eration. A two-stage stochastic linear programming model not only
determines the optimal size location and routing plan for multiple
depot facilities for feedstock storage and processing plants, but also
mitigates carbon emission from the supply chain network under
feedstock supply uncertainty. We propose a hybrid algorithms that
combine Sample Average Approximation algorithm with an
enhanced Progressive Hedging algorithm to solve our proposed
model. The enhanced Progressive Hedging algorithm combines
several heuristics such as the dynamic penalty parameter updating
technique, the local and global heuristic techniques, and the Roll-
ing horizon algorithm. Computational results indicate that the
hybrid decomposition algorithm (SAA + PHA + HR + RH) is capable
of producing high quality feasible solution consistently in a reason-
able amount of time to solve realistic large-size problem instances.

We use Mississippi and Alabama as a testing ground to evaluate
the performance of the modeling results for our study. Our compu-
tational experiments reveal some insights into the impact of feed-
stock supply uncertainty on the design and management of supply
chain networks in multi-purpose pellet processing depots. It is
observed that depots can help to handle supply variation and that
bio-refineries and coal industries will greatly benefit by the depots
because when there is excess supply, the depots can sell excess
feedstock to other markets. When there is a lesser supply, the
depots can help to meet demand from their stored inventories. It
is also observed that high supply variability increases the unit
delivery cost of feedstock by 3.4% from the base case for model
[DP] and by 6.31% for the model [EDP]. Furthermore, when the
mean feedstock supply increases (e.g., 20%) it will drop the unit
delivery cost of pelletized feedstock by 5.78% from the base case,
and when the carbon credit is loose (25 billion tons), it will drop
the unit delivery cost by 6.4% from the base case. The sensitivity
analysis further reveals how feedstock demand on different
markets affect the location and performance of the biomass supply
chain network.

The contribution of this paper to the body of knowledge in sup-
ply chain can be summarized as follows:

� We propose a two-stage stochastic linear programming model
for the design and management of supply chain networks in
multi-purpose pellet processing depots.
� We develop a hybrid algorithm to solve the mathematical
model. The proposed hybrid decomposition algorithm connects
a Sample Average Approximation algorithm with an enhanced
Progressive Hedging algorithm to make the model consistently
solve faster and produce high quality solutions in a reasonable
amount of time.
� A real-world case study of the model is presented to validate
the effectiveness of the proposed hybrid algorithm. The findings
from this study can be used by decision makers to design a
robust logistics network for multi-purpose pellet processing
depots.

This work can be extended in several directions. Since this study
ignores the impact of congestion caused by feedstock seasonality
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and uncertainty, future studies could address this issue. Further-
more, this work assumes that the feedstock supply chain network
is robust and will never fail when in reality, the facilities can be
disrupted due to natural (e.g., 2005 hurricane Katrina, 2008 China
Haiti earthquake) or human-made disasters (e.g., 2010 gulf of Mex-
ico oil spill). Future research factoring in the effect of natural or
man-made disasters could add valuable information to the current
work.
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