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Agricultural residues have been identified as a significant potential resource for bioenergy production,
but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an
important role in limiting soil erosion from wind and water and in maintaining soil organic carbon.
Because of this, multiple factors must be considered when assessing sustainable residue harvest limits.
Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil
Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning
Index. Currently, these models do not work together as a single integrated model. Rather, use of these
models requires manual interaction and data transfer. As a result, it is currently not feasible to use these
computational tools to perform detailed sustainable agricultural residue availability assessments across
large spatial domains or to consider a broad range of land management practices. This paper presents an
integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind
erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue
removal modeling system. This enables the exploration of the detailed sustainable residue harvest
scenarios needed to establish sustainable residue availability. Using this computational tool, an assess-
ment study of residue availability for the state of Iowa was performed. This study included all soil types
in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage
management methods, and five residue removal methods. The key conclusions of this study are that
under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are
sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue
removal could sustainably approach 40 million Mg. However, when considering the economics and
logistics of residue harvest, yields below 2.25 Mg ha�1 are generally considered to not be viable for
a commercial bioenergy system. Applying this constraint, the total agricultural residue resource available
in Iowa under current management practices is 19 million Mg. Previously published results have shown
residue availability from 22 million Mg to over 50 million Mg in Iowa.

Published by Elsevier Ltd.
Software availability significant potential (Bauen and Kaltschmitt, 2001). Biomass
The VE-Suite software is freely available under the GNU LGPL
license. Documentation and software are available at www.
VE-Suite.org.

The models and databases used are listed in Table 1.

1. Introduction

Global initiatives to develop renewable, low carbon energy
sources have identified biomass feedstocks as a resource with
ling Science and Technology.
: þ1 208 526 2639.

r Ltd.
feedstocks provide a renewable pathway to support liquid trans-
portation fuels and are also being investigated as a low net carbon
feedstock for electricity generation. As in many countries, the
United States has set national targets for bioenergy production
through biofuel and biopower generation (Energy Independence
and Security Act, 2007). Meeting these goals requires develop-
ment and utilization of biomass resources well beyond current
production levels.

In 2005 a US Department of Energy (DOE) study identified that
more than one billion tons of biomass may be available annually for
energy production in the US (Perlack et al., 2005). Three-hundred
million tons of this biomass will come from agricultural residues
(i.e., materials other than grain including stems, leaves, and chaff

Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://www.VE-Suite.org
http://www.VE-Suite.org
mailto:David.Muth@inl.gov
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2012.04.006
http://dx.doi.org/10.1016/j.envsoft.2012.04.006
http://dx.doi.org/10.1016/j.envsoft.2012.04.006


D.J. Muth Jr., K.M. Bryden / Environmental Modelling & Software 39 (2013) 50e69 51
[Perlack et al., 2005]). However, sustainable use of agricultural
residues for bioenergy production must take into consideration the
critical role of agricultural residue in maintaining soil health and
long-term productivity (Johnson et al., 2009, 2006; Wilhelm et al.,
2007; and Karlen et al., 2003). A recent review study identified
six environmental factors that can limit sustainable agricultural
residue removaldsoil organic carbon, wind and water erosion,
plant nutrient balances, soil water and temperature dynamics, soil
compaction, and off-site environmental impacts (Wilhelm et al.,
2010). These factors result from complex interactions between
local soil characteristics, climate, and land management practices.
Because of the breadth of soils, climate, and land management
practices, it is not possible to determine the agricultural residue
removal limits from experimental measurement or current practice
at the level of detail and accuracy needed for policy decisions.
Currently, there are no tools or models that perform this type
of analysis (Wilhelm et al., 2010). Delivering this tool requires
integrating the set of models that describe wind erosion, water
erosion, and soil carbon together with an extensive set of databases
that describe soil, climate, and land management practices.

Agricultural residue availability analysis is further complicated by
the need for aggregate assessments across entire states, regions, and
the nation. Historically, due to the constraints imposed by manual
input and interaction with models, large geographic assessments of
sustainable agricultural residue removal potential have relied on
a reduced-scenario modeling approach that utilizes a limited
number of representative agricultural production scenarios (Graham
et al., 2007; Nelson, 2002; and Nelson et al., 2004). Using repre-
sentative scenarios has several weaknesses. To accurately represent
the wide variety of soil types, climates, and management practices,
a large number of scenarios are needed, which requires significant
computational time. Because of this, the reduced-scenariomodeling
approach cannot effectively represent the decision space. This
approach significantly limits the ability of the decision maker to
explore and understand unique or hypothetical management
scenarios and provides little capability for performing robust
sensitivity analysis. In addition, the manual process of developing
a set of representative scenarios is not readily extensible. For
example, adding a newmodel or a new database requires rebuilding
the entire set of representative scenarios, which is time-consuming
and costly.

This paper presents an integrated modeling strategy capable of
characterizing the multiple limiting factors impacting sustainable
agricultural residue removal within a single, extensible, interactive
residue removal analysis system. To do this the integration
framework must address three requirements:

1. Seamless integration of existing models. Models and databases
that address individual aspects of this overall system exist
today. These models are fully developed, validated, and peer-
reviewed. The integration framework must be able to incor-
porate these models without change to their source code or
validity.

2. Plug-and-play interaction. The core set of models has been
developed independently from this framework and from each
other. As a result, these models will continue to be updated
and revised independently from the integration framework. In
addition, different scenarios will require different models and
databases, and researchers may wish to compare the results of
one set of models or databases with the results of another.
Because of this, a “hard coded” approach is not appropriate and
the integration framework must support interactive update and
revision of themodels and databases within the systemsmodel.

3. Intuitive, real-time interaction. The integrated computational
model will be used by a number of different groups and
individuals, each with different skills and different analysis
needs. The framework needs to be able to interactively support
the disparate needs of each of these groups for varying models,
assumptions, scenarios, and user interfaces.

The development of this integrated residue removal modeling
system is described in this paper. The case study presented demon-
strates the initial implementation of thismodeling tool following the
description of the development of the modeling system.

2. Background

2.1. Sustainable residue removal studies

In the past, the majority of efforts regarding the sustainability of
agricultural crop residue removal were focused on limiting water
and wind erosion to the tolerable soil loss limits established by the
Natural Resources Conservation Service (NRCS) of the US Depart-
ment of Agriculture (USDA). Little effort was focused on the impact
of agricultural crop residue removal on broader soil tilth or
productivity concerns. In 1979, Larson conducted one of the first
large-scale studies focused on crop residue removal and its effect on
soil erosion using the Universal Soil Loss Equation (Larson, 1979).
This study included the Corn Belt, the Great Plains, and the South-
east. The effect of tillage practices (i.e., conventional, conservation,
and no-till) and residue management were investigated with
respect to rainfall and wind erosion, runoff, and potential nutrient
removal. This study found that for the management practices and
crop yields at the time, nearly 49 million metric ton of residue was
available annually throughout the Corn Belt. Soil carbon, tilth, and
productivity maintenance were not considered.

As a result of limited interest in agricultural residues for energy
production during the 1980s and 1990s, no additional large spatial
scale assessments of residue availability were performed until more
than two decades after Larson’s study. Nelson (2002) used the
RevisedUniversal Soil Loss Equation (RUSLE) (Renard et al.,1996) and
Wind Erosion eQuation (WEQ) (NRCS, 2011a) to expand on Larson’s
analysis to develop a methodology to estimate the sustainable
removal rates of corn stover and wheat straw at the soil-type level.
This methodology considered rainfall and wind-induced soil erosion
as a function of reduced and no-till field management practices. In
2004, Nelson et al. used the same approach to assess five othermajor
one- and two-year cropping rotations (e.g., cornesoybean). Neither
of these studies addressed soil organic matter as a function of
removal. Researchers have also used the Revised Universal Soil Loss
Equation, Version 2 (RUSLE2 [NRCS, 2011b]) and/or Wind Erosion
Prediction System (WEPS [NRCS, 2011c]) to address a number of
erosion-based questions on crop residue removal (Karlen et al., 2003;
Nelson, 2002).

Agricultural residue removal studies have also been performed
using the DAYCENT (Adler et al., 2007), Environmental Policy
Integrated Climate (EPIC) (Gregg and Izaurralde, 2010), and Agri-
cultural Policy/Environmental eXtender (APEX) (Powers et al.,
2008) models. These studies have focused on specific case study
analyses without focusing on larger scale residue availability
projections. Also, these analyses were focused on specific sustain-
ability questions, such as greenhouse gas (GHG) impacts of residue
removal, carbon sequestration impacts, and potential water quality
impacts. Each of these models is reviewed below.

RUSLE2 simulates daily changes in field conditions based on
soil aggregation, surface wetness, field management practices,
and residue status, and is driven by daily weather parameters.
Currently, these parameters are manually entered into RUSLE2
from various disparate databases. RUSLE2 is mainly used as a guide
for conservation planning and accurately represents trends
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demonstrated in field data (McCool et al., 2004; Foster et al., 2003).
It has been used for cropland, pastureland, rangeland, and
disturbed forestland applications (Ismail, 2008; Dabney et al.,
2006; Foster et al., 2006; Schmitt, 2009). Several previous efforts
have utilized RUSLE2 to simulate water erosion processes within
broader analysis efforts ranging from watershed scale soil quality
assessments (Karlen et al., 2008), to assessing risks at abandoned
mining sites (Vaszita et al., 2009), and even socio-economic
impacts of biophysical processes (Halim et al., 2007).

WEPS uses a Fortran 77 computational engine to implement
a process-based daily time-step model that simulates soil erosion
due to wind forces by direction and magnitude (Wagner and
Tatarko, 2001). WEPS, like RUSLE2, simulates daily changes in
field conditions, models a three-dimensional simulation region
requiring a set of parameters describing climate, soil aggregation,
surface wetness, field-scale, field management practices (including
crop rotation and growth) and residue status, and is driven by daily
weather projections. WEPS has been evaluated for erosion predic-
tions on cropland fields (Hagen, 2004) and has been used previ-
ously for case studies in corn stover harvest (Wilhelm et al., 2007).

RUSLE2 and WEPS each calculate components of an NRCS-
developed metric for establishing management practice impacts
on overall soil health. This metric is the Soil Conditioning Index
(SCI). When coupled, the twomodels perform all of the calculations
necessary for the integrated systems model to establish the SCI.
The SCI provides qualitative predictions of the impact of cropping
and tillage practices on soil organic carbon, which is an important
factor in sustainable agricultural residue removal. The SCI has been
used to support watershed scale soil quality assessments (Karlen
et al., 2008), evaluate cropping systems in northern Colorado
(Zobeck et al., 2008), and investigate southern high plains agro-
ecosystems (Zobeck et al., 2007).

DAYCENT is a biogeochemistry ecosystem model that assesses
soil GHG fluxes. It is a daily time-step version of the CENTURY
model (Parton et al., 1998). The DAYCENT model utilizes the
ecosystem processes represented in CENTURY but also incorporates
a land surface submodel to simulate plant production, nutrient
cycling, and trace gas fluxes. DAYCENT has been used for a variety of
applications including the assessment of soil N2O and GHG fluxes
for major US crops (Del Grosso et al., 2005), simulating global crop
production (Stehfest et al., 2007), and simulating soil carbon in
forest ecosystems (Pepper et al., 2005).

The EPICmodel (http://epicapex.brc.tamus.edu/) was developed
in the 1980s to estimate the impact of erosion on soil productivity.
EPIC is a field-scale, daily time-step model. It simulates crop
growth, carbon cycles, and erosion considering weather, soil char-
acteristics, landscape, crop rotation, and management practices.
EPIC has been used to explore alternative nitrogen management
practices (Rejesus and Hornbaker, 1999), study the impact of high
crop prices on environmental quality (Secchi and Babcock, 2007),
and simulate potential switchgrass production in the US (Thomson
et al., 2009).

The APEX model (http://epicapex.brc.tamus.edu/) has been
developed as an extension to EPIC to simulate at the whole-farm
and small-watershed scale. APEX has components that consider the
routing of water, sediment, nutrients, and pesticides across the
landscape. This includes components considering groundwater and
reservoirs. These features allow the APEX model to simulate water
quality impacts of landmanagement practice changes. APEX has been
used to investigate the impacts of alternative practices for livestock
farms (Gassman et al., 2006), environmental benefits of dairy manure
incorporation (Osei et al., 2003), and simulate the potential effects of
climate change on erosion and water quality (Williams et al., 1998).

Each of these modeling tools provides valuable simulation
results for investigating factors that can potentially limit
sustainable removal of agricultural residues. RUSLE2, WEPS, EPIC,
and APEX each calculate soil erosion. SCI, DAYCENT, EPIC and APEX
each simulate the impacts of management decisions on soil carbon
cycles. Soil GHG fluxes are modeled within DAYCENT, EPIC, and
APEX. For this modeling work, the RUSLE2, WEPS, and SCI models
were chosen for three reasons: (1) each is currently part of the
USDA conservation management planning process used to certify
sustainable management practices, which makes the integrated
model results directly relevant for bioenergy industry decision
makers, (2) they take crop yields as model inputs, which facilitates
investigation of impacts from spatial and temporal variability in
crop yield, and (3) they have relatively short model execution times
(<1 min typically), which makes then viable within an integrated
multi-model decision framework.

2.2. Model integration frameworks

The definitions of framework are varied and can refer to soft-
ware libraries, software applications, structural components of
a building, and everything in between. A general definition of
framework is “a basic structure underlying a system, concept, or
text” (Soanes and Stevenson, 2005). In this discussion, framework
will refer to a software application that is the basic structure
utilized to integrate, simulate, and understand complex systems.
Padula and Gillian (2006) note that the main issues facing the
development of software frameworks are

� Verification and validation of federated simulation environments
� Knowledge capture stemming from these large federated
simulation environments

� Easy access to large simulations through graphical displays

One of Padula and Gillian’s key ideas is that many frameworks
center on creating data repositories that tie information to the
components they represent (Padula and Gillian, 2006). These
repositories then enable the users of the frameworks to seamlessly
query information on a per-component basis.

Model integration frameworks have been developed and
used extensively for environmental modeling applications. Several
examples of integrated modeling frameworks used for hydrology
and water resource management applications include pesticide
development in tile-drained fields (Branger et al., 2010), investi-
gating the impacts of wildfires on flow and constituent loading
(Feikema et al., 2011), a dam break scenario (Malleron et al., 2011),
water requirement determinations (Hughes and Louw, 2010),
and microbial respiration in floodplain landscapes (Tritthart
et al., 2011). Additional applications of integrated environmental
modeling frameworks have focused on supporting policy andwater
resource allocation decisions (van Delden et al., 2011; Ramin et al.,
2011; Goodall et al., 2011; Merot and Bergez, 2010). Frameworks
that integrate environmental models with economic models have
also been developed to investigate land use (Schweitzer et al., 2011)
and water management at the catchment scale (Kragt et al., 2011)
Considerable attention has also focused on defining and evaluating
integrated environmental modeling frameworks (Lloyd et al., 2011;
Argent et al., 2006; Schmitz et al., 2009; Rizzoli et al., 2008).
The definition of framework used in this paper is consistent with
the definition provided by Rizzoli et al. (2008): “a set of software
libraries, classes, and components, which can be (re-)used to
assemble and deliver an environmental decision support system
(EDSS) or an integrated assessment tool (IAT) to support modeling
and processing of environmental knowledge and to enhance the re-
usability and distribution of such knowledge.” Lloyd et al. (2011)
further classified environmental modeling frameworks as “tradi-
tional vs. lightweight” and presented a methodology for measuring

http://epicapex.brc.tamus.edu/
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framework “invasiveness,” defined as the “degree to which model
code is coupled to the underlying framework.”

In the model presented here, the goal is to create an integrated
residue removal modeling tool that utilizes an integration frame-
work to couple the RUSLE2, WEPS, and SCI models together with
the databases needed. In addition to integrating a set of disparate
models and databases, the integrated modeling framework chosen
also needs to provide an extensible, easily understood user
interface that enables the user to investigate opportunities for
agricultural residue removal for energy use. Currently available
open-source software frameworks addressing one or more aspects
of this task include

� SCIRun for scientific visualization and computational steering
(SCI, 2011)

� Dataflow visualization-oriented packages, such as OpenDX
(2011), for visualization integration

� Common Component Architecture (CCA)-capable CCaffeine
(Allan et al., 2005; Bernholdt et al., 2006), a general purpose
component framework that uses wrappers to work with
software source units

� Object Modeling System (OMS) (Lloyd et al., 2011; Ascough
et al., 2005; David et al., 2002) facilitates component-
oriented model development and provides an integrated
development environment with GIS, visualization, statistical
analysis, model calibration, and data retrieval tools.

� The Invisible Modeling Environment (TIME) (Rahman et al.,
2003) utilizes a .NET platform to supports the development
of new model components, utilization of multiple program-
ming languages, testing of model components, and data
handling.

� Open Modelling Interface (OpenMI) (Gregersen et al., 2007)
provides a standardized time-step based interface to define,
describe, and transfer data.

� VE-Suite (McCorkle and Bryden, 2007), which is a general
purpose integration package that enables users to interact with
coupled engineering models and simulations interactively

Examples of closed-source packages include

� Matlab’s Simulink� (MathWorks, 2011) for integrating third-
party software such as LMS Virtual.Lab� (LMS International,
2011) with Matlab�

� Execution Engine� (formerly Fiper�) (Simulia, 2011) for
distributed collaboration of design teams, which has been
customized primarily for GE

� Aspen Plus� (AspenTech, 2011) for chemical process plant
simulation

� ModelCenter� (Phoenix Integration, 2011) for integrating
a wide range of third-party solvers (e.g., Excel�, user subrou-
tines) with optimization and design space exploration

� Protrax� (2011) for modeling large plants at a system level

Many of these packages tend to be targeted to specific applica-
tions (e.g., Aspen Plus for chemical process modeling) and do not
address the need for a generalized framework that can be used to
create integrated computational environments for the engineering
of generic complex systems and processes. For example, SCIRun has
computational steering capability and visualization support but
does not provide an extensible method for integrating generic
simulation andmodeling tools. ModelCenter�, Execution Engine�,
Protrax�, and Matlab’s Simulink� all provide support for the
integration of specific sets of tools or for high-level systems
modeling capability. OMS, TIME, and OpenMI are focused on
environmental model integration. OMS 3.0 provides a lightweight
architecture using annotation for data transfer, but requires access
to source code for the models being integrated. TIME requires
utilization of .NETas the development environment, which presents
limitations when considering cross-platform implementations.
OpenMI is widely used in Europe for environmental model
integration and provides a specification for linking components.
Each of these packages fills a specific need and provides a desired
set of tools for a specific clientele, but they do not include the
capability for the inclusion of a generic set of models. VE-Suite
provides a shared framework that integrates of a generic set of
models that can be accessed in real-time (McCorkle and Bryden,
2007). Models can be included without access to the source code.
In addition the longer termgoal of this project is to integrate a broad
set of engineering, economic, and environmental analyses. VE-Suite
is not primarily focused on coupled environmental models, and
OMS, TIME, and OpenMI have a larger literature base and existing
bank of code for environmental model integration. However,
VE-Suite enables users to incorporate component models and
corresponding two-dimensional and three-dimensional graphical
representations to create new plug-and-play framework compo-
nents. By design, the framework components can be distributed
across computational resources to make the most efficient use of
resources. Based on the long-termgoals of this project, VE-Suitewas
selected as the integration framework for this project.

3. Models and methodology

3.1. RUSLE2

The RUSLE2 model used for the study was the RUSLE2 Object Modeling Envi-
ronment (ROME) shared library version compiled from the core RUSLE2 code repos-
itory on 17 September 2010. RUSLE2 is a process-based daily time-step model that
describes the effects of agricultural cropping practices on soil erosion by rainfall and
overland water flow. It simulates erosion along an overland flow path by accounting
for soil detachment and deposition processes using an algebraic formulation of mass
conservation. RUSLE2 computes both temporal and spatially variable effects, such as
the effect of soil and landmanagement varying along a hill slope. RUSLE2 uses a set of
databases concerned with soils, field management (e.g., tillage), climate, vegetation,
and crop growth that are used at various times during the simulation period to make
daily and/or annual soil loss calculations. The prediction of an average annual soil loss
is a function of both erodibility and erosivity. Erodibility is related to the susceptibility
(the inverse of resistance) of the soil to erosion and is affected by management.
Erosivity is a measure of the forces actually applied to the soil by the erosive agents of
raindrop impact, waterdrops falling from plant canopy, and surface runoff.

Fig. 1 shows the information flow into and out of the RUSLE2 model. RUSLE2
simulates soil loss using conservation of mass principles shown in Fig. 2. Each of the
data elements in Fig. 1 is used within the model to establish the variables for the
RUSLE2 soil loss simulation. The RUSLE2 equation for computing average annual soil
loss for the ith day is presented in Eq. (1).

ai ¼ rikiliScipi (1)

where ai is the average annual soil loss for day i, ri is rainfall/runoff, S is the steepness
of the slope, ki is the soil erodibility, ci is cover-management, li is slope length, and pi
is supporting practices. Eq. (1) provides the daily soil loss, or total “Sediment Out” in
Fig. 2, but Eq. (1) does not calculate the deposition component of the mass balance.
Eq. (2) represents the calculation for the deposition rate (i.e., mass per unit area).
This equation represents simulation scenarios where the sediment load exceeds the
transport capacity, which is determined through Eq. (3). With these parameters
established, the steady-state conservation of mass (Eq. (4)) is used to establish net
detachment and deposition. Eq. (5) is then used to aggregate the daily time-steps
determining the average annual soil loss.

Dp ¼
�
Vf

q

�
ðTc � gÞ (2)

where Vf is the fall velocity of the sediment, q is the runoff rate, Tc is the transport
capacity of the runoff, and g is the sediment load (i.e., mass per unit width).

Tc ¼ KTqs (3)

where s is the sine of the slope angle and KT is a transport coefficient calculated
considering cover-management parameters.

gout ¼ gin þ DxD (4)



Fig. 1. Information input and output for RUSLE2.
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where gout is the sediment load leaving the lower end of a segment of the slope, gin is
the sediment load entering the upper end of a segment of the slope, Dx is the length
of the segment, and D is the net detachment or deposition within a segment.

A ¼
�P365

i¼1ai
�

m
(5)

where A is the average annual soil loss, m is the number of years in the assessment,
and ai is as defined in Eq. (1).

Previous studies (Ismail, 2008; Karlen et al., 2008) implemented RUSLE2 within
a manual data flow process where direct human interaction with the RUSLE2 user
interface was required for each model run. Modeling systems requiring this level of
interaction significantly limit the number and character of simulations that can be
included in the analysis. Several researchers have worked to overcome these limi-
tations by building conceptual model representations of RUSLE2 (Hai-yan et al.,
2010) or custom recoding of the RUSLE2 equation set (Richard et al., 2007). These
approaches of using conceptual models or recoding to utilize RUSLE2 allow for
flexibility in the application of RUSLE2. The challenge is that recoding, or developing
a simple conceptual model, does not leverage the significant investment that has
Fig. 2. Conservation of mass principles in the RUSLE2 simulations.
already been made validating the version-controlled RUSLE2 core model. The most
effective approach to take advantage of the extensive validation efforts is to
integrate the model without changing code.
3.2. WEPS

The WEPS model used for this study is version 1.1, released August 30, 2010.
There is overlap between the data required for the RUSLE2 and WEPS models, but
the WEPS model requires significantly more data. This data is manually entered
into WEPS from various disparate databases. WEPS provides detailed data in
annual and period erosion events, as well as saltation, creep, suspension, partic-
ulate matter less than 10 micrometers (PM-10) emissions, wind energy, and
boundary loss (Fig. 3). Fig. 4 shows the information flow into and out of the WEPS
model.

As shown in Fig. 5, WEPS utilizes a set of modular submodels to calculate wind
erosion-induced soil losses. The submodels interact to characterize the conditions
required for the soil loss equations within the erosion submodel. The erosion sub-
model executes mass conservation equations for each of the three size classes of
eroding soil: (1) suspension (<0.1 mm), (2) saltation and creep (0.1e2.0 mm), and
(3) PM-10 emissions (<0.01 mm). Each of these conservation relationships utilize
a series of parameters requiring detailed information about the simulation site.
These parameters are fed into the model through a series of input files. The WEPS
submodels parameterize and calculate the data points for the core soil loss
calculations through the data inputs in Fig. 4.

Within WEPS, the erosion process is modeled as conservation of mass on
a time-dependent basis using coupled partial differential equations resolving
a computational control volume for the three previously mentioned size classes of
eroding soil. Each of the conservation of mass equations requires a detailed char-
acterization of the field site conditions including soil surface characteristics, soil
hydrology, vegetative cover, weather events, and many others as seen in Fig. 4.
The submodels in Fig. 5 utilize the data inputs from Fig. 4 to provide the detailed
site characterization parameters to the conservation of mass equations within the
erosion submodel. Eq. (6) is the conservation equation for soil in the saltation and
creep size class. This equation captures two sources of erodible material, emission
(Gen) and abrasion (Gan), and two sinks for erodible material, surface trapping (Gtp)
and suspension (Gss).



Fig. 3. WEPS mathematically simulates the mechanisms for soil loss caused by wind
using a process-based daily time-step simulation (Hagen et al., 1996).
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vðCHÞ
vt

¼ �vqx
vx

� vqy
vy

þ Gen þ Gan � Gtp � Gss (6)

where x and y equal the horizontal distances (m) in perpendicular directions parallel
to the simulation region boundaries, t is time (s), C (kg/m3) is the average concen-
tration of saltating particles in the control volume of height H. The differential
saltation discharge (saltation-sized particles leaving the control volume) terms qx
and qy are the components of the saltation-sized particles, q, leaving the control
volume in the x and y directions (kg/ms). Gen, Gan, Gtp, Gss are the net vertical soil
fluxes from the emission of loose soil, the surface abrasion of aggregates/crusts, the
Fig. 4. The WEPS model requires extensive soils, climate, and management data to perfor
OM ¼ Organic matter, FO ¼ field operation, ER ¼ erosion).
trapping of saltation, and the suspension of fine particles from the breakdown of
saltation and creep, respectively (kg/m2s). Through the convergence of the mass
balance equations across the control volume, the soil loss is established and the
relative changes in soil conditions are distributed to the other submodels in Fig. 5 for
the next time-step. The other conservation equations, for suspension and PM-10 size
classes, work functionally the same as Eq. (6) within the control volume, but with
size class specific source and sink terms.

3.3. Soil Conditioning Index

The SCI is comprised of three sub-factors: (1) the organic matter sub-factor
(SCI OM); (2) the field operation sub-factor (SCI FO); and (3) the erosion sub-
factor (SCI ER). The SCI OM sub-factor models the amount of organic material
returned to and removed from the soil. The SCI FO sub-factor takes into consider-
ation the effects of field operations on organic matter decomposition and is calcu-
lated using the data describing the field operations in the RUSLE2 and WEPS
database structures. The SCI ER sub-factor estimates whether erosion rates for
a given site are degrading, steady-state, or aggrading. This is done by using empirical
data for tolerable soil losses and comparing scenario results to set the ER sub-factor.
The three sub-factors are used to calculate the SCI in Eq. (7) as follows:

SCI ¼ ð0:4 OMÞ þ ð0:4 FOÞ þ ð0:2 ERÞ (7)

Through this calculation, the SCI provides a qualitative prediction of the impact of
land management practices on the level of soil organic matter. An SCI < 0.0 predicts
a decrease in soil organic matter, whereas an SCI � 0.0 predicts maintained or
increased soil organic matter.

Utilizing the SCI to assess the soil organic carbon impacts of agricultural residue
removal scenarios requires coupled analysis that includes both the WEPS and
RUSLE2 models. The SCI FO component is a characteristic of the specific land
management practices. The SCI OM component represents the interactions between
soil characteristics, residue biomass decomposition, and climate conditions. The SCI
m wind erosion calculations. (PM-10 ¼ particulate matter less than 10 micrometers,



Fig. 5. WEPS core models are built on a Fortran 77 infrastructure that implements
a modular set of submodels to calculate losses due to wind erosion (Hagen et al., 1996).
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ER component requires input from both RUSLE2 and WEPS to be comprehensive. In
the integrated residue removal modeling tool described here, RUSLE2 models the
SCI OM and SCI FO sub-factors as well as accounting for the water erosion compo-
nent of the SCI ER sub-factor. Thewind erosion component of the SCI ER sub-factor is
calculated by WEPS. The SCI ER sub-factor is calculated by WEPS and then provided
to RUSLE2 within the integrated model. With the data input from WEPS, RUSLE2
completes the SCI calculation.

3.4. Model integration framework

Three components of VE-Suite have been employed to support the development
of the integrated environmental process modeling framework built for this
analysisdVE-Open, VE-Conductor, and VE-CE. Considering the framework design
classifications of traditional and lightweight provided by Lloyd et al. (2011), VE-Suite
has characteristics of both classifications, but is more aligned with the lightweight
framework classification. Specifically, framework components are bound dynami-
cally at run time, are independent of the framework, prefer convention over
configuration, and are integrated with a “small” programming interface (API). The
characteristics of VE-Suite, which aremore consistent with Lloyd et al.’s definition of
a traditional framework, are dependencies on additional libraries and generalized
data structures for framework data transfer. The invasiveness, as defined by Lloyd
et al., within this integrated model is minimal. Model source code has not been
changed for the tools integrated in this application. This is an important feature both
in terms of the models being utilized and the decisions being supported by the
integrated model. One characteristic important for model selection in this applica-
tion is the direct connection to policy administration by NRCS. The models are
continually under refinement and being improved, resulting in new releases.
Through minimal invasiveness, new releases of the models can be implemented
within the framework within hours. This creates a seamless connection between the
decisions supported through this integrated model and the conservation manage-
ment planning process within NRCS.

VE-Open is the interface specification and set of tools that facilitate the exchange
of data between framework components. The VE-Open design builds on an open
architecture approach to integrating information. VE-Open utilizes multiple inte-
gration formats by specifying a schema for information to adhere to and leverage
other schemas, such as COLLADA (Arnaud and Barnes, 2006), which has taken
a useful approach to creating an extensible specification built on XML and XML
Schema. The VE-Open interface specification is analogous to that of the Computer-
Aided Process Engineering (CAPE)-Open specification used by chemical process
simulation tools. VE-Open is also analogous to the Distributed Interactive Simulation
(DIS) specification utilized in military applications to share war game simulation
information across distributed computer resources with multiple clients
(Distributed Interactive Simulation Committee of the IEEE Computer Society, 1998).
Considering familiar tools within the environmental modeling community, VE-Open
is similar to OpenMI (Gregersen et al., 2007) in that it provides a clear specification
for framework component communication. There are two primary differences
between VE-Open and OpenMI. First, VE-Open has been developed as a generalized
interface for engineering applications, whereas OpenMI has been developed with
a focus on integratedwater management. This has resulted in more generalized data
structures within VE-Open, including the support of advanced visualization. Second,
OpenMI can require significant code changes to the framework components,
whereas VE-Open has been designed to facilitate the use of executable versions
of models. With certain modeling tools, this can be limiting in terms of complex
two-way interactions, but for this framework it is a key feature to support the
seamless exchange of model versions as described previously. The VE-Open model
interface has a number of characteristics important in this application, including

� Simplicity. The functions that are implemented are general and can be adapted
to a wide variety of simulation environments.

� Generalization. The interface removes the specificity of any discipline and
provides generic structure for data types and software engine structure.

� Enhanced data passing. The interface provides for passing data beyond the level
of simple scalars to downstream models.

VE-Conductor provides the graphical user interface (UI) component of the inte-
grated framework. The UI is implemented with the following software design goals:
(1) multi-platform support; (2) detachability; (3) location transparency; (4) exten-
sibility; and (5) unified control. The UI is the controller that allows the engineer to
interrogate the integrated modeling environment. The UI exists independently from
the computational engine as a separate Common Object Request Broker Architecture
component. This functionality allows the UI to be attached and detached from an
active simulation on any compatible computer on the simulation network. For
example, a user could build and start a simulation, detach from the computational
engine or visualization engine, go to a different location, re-attach to the simulation,
and regain monitoring and control functions.

VE-CE is the computational scheduler. It constructs, coordinates, schedules, and
monitors simulation runs. It is capable of running a simulation containing amultitude
of different types of models, each accepting and generating a myriad of data types.
The computational scheduler is also able to analyze a simulation configuration,
determine execution order, marshal system resources to create model instances, and
coordinate the flow of data through the simulation framework. Tasks that require
specific knowledge about a data type or model are relegated to either the detachable
UI or to a specific model, thus keeping the computational engine highly generalized
with a lightweight code.
3.5. The integrated residue removal modeling tool

As discussed earlier, the challenge is to integrate a set of disparate models and
databases to create an interactive assessment tool that enables a user to investigate
opportunities for removing agricultural residue for energy use. Fig. 6 shows the
information flow within the integrated residue removal modeling system. In this
design, the user specifies the area that will be assessed. This area can be as small as
a single farm or as large as an entire country. The mechanisms for selecting the area
currently include list box interfaces that provide all combinations of political
boundaries (e.g., counties and states). The ability to input the specific set of soils that
define a farm or group of farms is also provided.

The climate data is dynamically acquired and assembled based upon the area(s)
selected for an assessment. The user assembles the management practices by
selecting from the database of approximately 33,000 NRCS-developed management
data points. Management practices can be selected and assembled at multiple levels.
The user can pick a pre-built management practice that includes all of the data
defining a scenario that represents the area of interest. The user can also assemble
the management practices by selecting each specific tillage, crop, fertilizer, and
harvest decision to create a custom land management scenario. Table 1 lists the
databases and models required for the integrated residue removal systems model.

Because these databases are developed and maintained by different organiza-
tions, they are natively in different formats and provide different mechanisms for
access and utilization. Each of these databases has been designed for utilization
within executable programs distributed to NRCS field office computers. Because of
this, they have been made publicly available for download and have not been
designed for direct database access via webservice or other online mechanisms.
These characteristics make the process of using these databases in this integrated
systems model via web services slow and infeasible given the number of calls to the
databases. To overcome this challenge, the databases were brought together and
managed in an SQLite onsite data repository of less than 50 gigabytes. Although the
choice of SQLite as a primary database tool for this model satisfies performance
requirements, it should be noted there are potential downsides to this choice
(e.g., the need for data duplication when distributing the model and the limitation
that write commands can only be done one at a time). The use of SQLite databases



Fig. 6. Representation of the data flow through the integrated residue removal systems model.
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allows optimized indexing and query development for fast communication within
this application. The latency of these communications is an important factor because
there are more than 20 million database calls being executed for this study.

Three data modulesdsoils, climate, and managementdreceive the user
instructions and interact with the databases to assemble and format the inputs for
each model in the integrated system, as shown in Fig. 6. When the user specifies
a scenario, each of the data modules processes the instructions and queries the
databases required to build its assigned model inputs as follows:

� Soils Data Module. This module provides a fully automated pathway for soils
data directly from the locally managed SQLite SSURGO database (Fig. 7) to
reach the integrated models in their required input format. For RUSLE2, the
soils data is assembled into the native model database format, which can be
directly loaded and used via the model automated programming interface
(API). In the case of WEPS, the soils data is output to specifically formatted files
that are read when the model executes.

� Climate Data Module. Climate data for RUSLE2 is assembled into the model’s
native database format via its API. To support WEPS, the climate data module
utilizes the climate generator models CLIGEN and WINDGEN as input data
sources to generate weather files as shown in Fig. 8 (USDA, 2011a; Wagner
et al., 1992). CLIGEN and WINDGEN are stochastic weather generators that
create daily weather events over specified time periods. CLIGEN generates
daily values for precipitation, minimum and maximum temperatures, solar
radiation, dewpoint, wind speed, and direction for a single geographical
location based on historical measurements, whereas the WINDGEN wind
generator provides accurate hourly wind speed and direction that enables
capturing hourly erosion events.

� Management Data Module. To facilitate plug-and-play interaction, the structure
and organization of the module heavily leverages the USDA NRCS data schema
for management scenarios. Leveraging this schema is advantageous for several
reasons: (1) multiple NRCS models are utilized in the framework; (2) the
schema is comprehensive and regularly updated; and (3) leveraging the NRCS
methodology will enable the ongoing use of the work by practitioners in NRCS
field offices across the country.
Table 1
The key data sources and models used are identified with the method for public access

Data Input Database

Soil SSURGO
RUSLE2 Climate RUSLE2 native.gdb format
WEPS Climate CLIGEN
Wind WINDGEN
Land Management NRCS native.gdb format
Crop Yields NASS

Modeling Function Model

Water Erosion/SCI RUSLE2
Wind Erosion/SCI WEPS
Integration Framework VE-Suite
There are four primary interaction requirements for this modeling framework:
(1) selecting the spatial area of interest; (2) establishing the land management
practices; (3) selecting and connecting the models; and (4) displaying the results.

3.5.1. Selecting the spatial extent for analysis
The first function for the user is establishing the areas of interest for an assess-

ment. The implementation of the framework used for this study requires selection of
areas with political boundaries (e.g., counties, states, and countries). User interfaces
are in place to select assessment areas ranging from a single county to multiple
counties to states and to the conterminous US.

3.5.2. Establishing land management practices
Input requirements for describing land management are extensive and variable

across regions. The land management inputs generally fall into one of four cate-
gories: (1) cropping rotations; (2) tillage practices; (3) fertilizer applications; and (4)
harvest practices. Management practice details are required at daily time-steps for
the models used. Depending on the scale of the assessment, the management
practices can have different levels of detail and assumptions. Larger spatial assess-
ments will utilize a set of management scenarios that encompass county or state
averages. In the case of individual farms or fields, more precise management char-
acteristics may be utilized.

User selection of management criteria is based on the existing management
schemas that are available through the USDA NRCS, which has developed an XML-
based data schema called the “skel” format that provides access to over thirty
thousand management elements in an NRCS managed SQLite database. The skel
format, described in greater detail later, is flexible in allowing the use of individual
criteria (e.g., a specific piece of tillage equipment), or a complete management
schema (e.g., all of the elements of a cornesoybean rotation in Boone County, IA).

3.5.3. Selection and connection of models
The framework design facilitates the use of multiple configurations of modeling

tools. Making this design work requires the ability to create and interact with the
network of models. VE-Suite’s user interface, VE-Conductor, handles model and
database network assembly. The user is given the available options for data and
to the data or model.

Access

NRCS NASIS Server (http://soils.usda.gov/technical/nasis/)
http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm
http://www.ars.usda.gov/Research/docs.htm?docid¼18094
http://www.weru.ksu.edu/
http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm
http://www.nass.usda.gov/

Access

http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm
http://www.weru.ksu.edu/weps/wepshome.html
http://www.vesuite.org

http://soils.usda.gov/technical/nasis/
http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm
http://www.ars.usda.gov/Research/docs.htm%3fdocid%3d18094
http://www.ars.usda.gov/Research/docs.htm%3fdocid%3d18094
http://www.weru.ksu.edu/
http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm
http://www.nass.usda.gov/
http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm
http://www.weru.ksu.edu/weps/wepshome.html
http://www.vesuite.org


Fig. 7. Schematic representation of the locally managed SQLite SSURGO database managed by the Soils Data Module.

Fig. 8. Block diagram of the climate module functionality.
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models, and is further given the ability to drag and drop the tools of choice onto the
VE-Suite canvas. The connections between the tools on the VE-Suite canvas are then
drawn with simple mouse clicks. The order of WEPS or RUSLE2 within the network
can be seamlessly exchanged, with the SCI being the final model because of data
input requirements from the other models. For the purpose of this study, the system
has been configured as shown in Fig. 6. Connections on the VE-Suite canvas repre-
sent two-part sets for VE-CE: (1) the order of the computational elements on the
canvas, and (2) the specific data elements to be exchanged. Calculation routines
within the model and data wrappers check for issues associated with the current
modeling network configuration and tell the user if there are any known problems
with the current use of the modeling tools. This includes functions within the model
wrappers that verify data formats and scales are correct for specific data elements.
With the model network assembled, the user can then interact with each of the
models, adjusting parameters as required for a specific assessment scenario.
With the network built and the parameters set, the user initiates the simulation. The
VE-Open interface (McCorkle and Bryden, 2007) facilitates the exchange of infor-
mation across each of the models. The individual model wrappers include the data
instructions and requirements for VE-Open to distribute the data. Upon connecting
the models on the canvas as described, VE-Open is instantiated and the data
structures assembled for use. Feedback loops and two-way model communication
can be specified with the connections on the canvas.

3.5.4. Display and interact with results
The requirements for interacting with the results are related to the spatial scale

and fidelity of the assessment being performed. For the case of a specific field,
delivering a single sustainable harvest rate is potentially the desired answer. In
contrast, for precision removal of agricultural residue across a field, many thousands
of data point results are needed. These results may be best delivered through a map.
Typically, larger spatial assessments are aggregated to county level results. Often it is
preferred to receive these results in a database or tabular form, thereby facilitating
use within a GIS package. Currently, the integrated residue removal modeling tool
developed here provides populated databases that are formatted to load into
external GIS tools for map generation.

The integrated systems model is built to work through the model scenarios as
they are defined by the user input. For example, if the user is investigating a single
farm they will have a set of soils and management practices (including crop yields)
that couple with the local climate data to define the scenario. If the user is inves-
tigating a single average yield and actual management practices, then the integrated
model will run that yieldemanagement combination for each of the soils that
comprise that farm. Modern harvesting equipment has the ability to collect in-field
yield data at approximately 3e5 m increments. In this case, a farm could potentially
have thousands of yieldemanagementesoil combinations for that single farm.
When performing regional scale analyses, the number of soils that need to be
investigated becomes large. The integrated systems model resolves the
yieldemanagementesoil combinations and iterates the integrated model set for
each scenario as required.

After the user has assembled the scenario and the datamodules have created the
model inputs, the WEPS model is executed. Fig. 9 shows the basic process flow for
the functions performed by the framework interface for theWEPSmodel. Within the



Fig. 9. The WEPS model wrapper within the toolkit utilizes the data provided through the previously described models to perform all necessary functions setting up the WEPS
model run scenario.
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framework each WEPS model iteration, including the exchange of data, the
construction of input files, the running of the model, and the acquisition of the
model results, takes between five and ninety seconds, depending on the specific
yield scenario for which the model is calibrated.

Upon completion of the WEPS model execution, RUSLE2 then runs and
completes the analysis flow as shown in Fig. 10. The RUSLE2 API is extensible and
facilitates the use of the model in this function. The data modules deliver the model
inputs to RUSLE2 in its native database format. Through the API, the database is
loaded, and the specific scenario-defining calls are then executed. Then the results
from WEPS that are required to run the SCI calculations are delivered to RUSLE2
through the API. The model executes in approximately 1e2 s depending on the size
of the input database loaded. When the model has successfully completed the run,
the API is used to retrieve the results.

Using the SCI to assess the soil organic carbon impacts of various agricultural
residue removal scenarios requires coupled analysis with both theWEPS and RUSLE2
models. The wind erosion component of the SCI ER sub-factor is calculated by WEPS.
As shown in Fig. 6, upon completion of the WEPS model, the data required for SCI
calculation is acquired from WEPS and passed into RUSLE2. In the modeling frame-
work described here, RUSLE2 models the SCI OM and SCI FO sub-factors as well as
accounting for the water erosion component of the SCI ER sub-factor. RUSLE2 then
utilizes theWEPS SCI ER sub-factor input in the calculations andoutputs the SCI result.

3.6. Integrated model application

The integrated residue removal model developed here was used to determine
sustainable agricultural residue removal rates for the state of Iowa for several
scenarios. The goals of this study were (1) to quantify residue availability under
current production practices, (2) quantify the impacts of various tillagemanagement
strategies on residue availability, and (3) provide county level residue removal
results that support environmentally and economically sustainable bioenergy
production decisions. The study was performed through the following steps:

1. Define and assemble the analysis scenarios,
2. Execute the integrated systems model, and
3. Examine the impacts of tillage decisions.

The first step was determining the information required to define the cases
being studied. These include establishing (1) the location and spatial extent of the
study, (2) crop rotations, (3) tillage managements, (4) residue harvest methods, and
(5) land management practices. Every scenario run of the integrated systems model
requires that these characteristics be defined. Using the location and spatial extent;
the local crop yields, soils data, and climate data are assembled from the coupled
databases. As the integrated residue removal systems model executes this set of
scenario runs, the data management modules are dynamically accessed to acquire
and format the data needed for each of the models in the integrated residue removal
systems model. The integrated residue removal systems model loops across this
complete set of scenario runs pushing each model output to the results database.
Fig. 10. The basic functional flow of th
The integrated residue removal systemsmodel then aggregates the county and state
level results calculated for each of the scenario runs. With the county and state level
results established, the user can then examine the results and draw overall
conclusions. Each of these steps is described in greater detail below.

3.6.1. Define and assemble the analysis scenarios
3.6.1.1. Crop rotations. Corn and winter wheat represent the two crops produced in
Iowa that provide residues for bioenergy production. The rotations selected for this
study were determined to be representative of Iowa’s production systems through
a five-year review (2006e2010) of USDA NASS production statistics (USDA, 2011c).
Corn and soybeans accounted for greater than 90% ofmanaged cropland in Iowa, and
the standard crop rotations in the state of Iowa are assembled around the primary
corn grain crop. Based on this, four standard crop rotations representing current
practices in Iowa were selected. As shown in Table 2 these rotations produce corn,
soybeans, and winter wheat.

3.6.1.2. Tillage management practices. As shown inTable 3, three tillage regimeswere
established for each of the four crop rotations used in this analysisdconventional
tillage, reduced tillage, and no tillage. These three tillage regimes match the defini-
tions provided by the Conservation Technology Information Center (2011). These
three tillage regimes were selected for two primary reasons: (1) they cover the range
fromminimum to maximum soil disruption and (2) they represent how the majority
of hectares are managed in Iowa. Table 3 lists the specific tillage operation associated
with each crop under each of the tillage regimes. The NRCS maintained database of
agricultural operations was used to establish key parameters defining the interaction
between each tillage practice and the soil (NRCS, 2011b). Moldboard plowing of corn
residue is the most invasive tillage modeled with depths up to 25.4 cm, 100% surface
disturbance, and 99% residue burial ratios. Chisel plow operations on corn residue are
considered reduced tillage operations with depths up to 20.3 cm and residue burial
ratios of 50e76%. Field cultivation operations are used in these modeled rotations to
smooth the soil surface in the springbefore planting. Field cultivation tills to depthsup
to 15.2 cm with a residue burial ratio of 20e40%.

3.6.1.3. Residue removal methods. Based on the need to investigate a range of
removal rates, five standard residue removal methods were modeled for each crop
rotationetillage combination. Each of these harvest methods utilizes existing
equipment and methods to remove agricultural residues from the field. Table 4 lists
and describes each of these five removal rates. The decision to use existing equip-
ment configurations rather than specifying hypothetical removal rates was based on
the need to understand the orientation of the material left on the field. Often
only the quantity of material left on the soil is considered when investigating
sustainable residue removal limits. However, in many scenarios, the orientation of
the remaining material is as or more important than the quantity. For example,
water erosion is best controlled with residue covering as much of the soil surface as
possible. Wind erosion, on the other hand, is best controlled by leaving taller
standing stubble in the field to reduce the kinetic energy of the wind prior to
interaction with the soil surface. By selecting existing harvest methods, the orien-
tation of the material remaining on the field can be confirmed.
e RUSLE2 API wrapper is shown.



Table 2
Crop rotation schema for the state of Iowa. Symbol reference notations are given to
support later discussion.

Rotation Year 1 Year 2 Year 3 Year 4 Symbol
Notation

Reference

Continuous Corn Corn Corn Corn Corn CC Rot1
Corn/Soybean Corn Soybean Corn Soybean CG-SB Rot2
Corn/Corn/Soybean Corn Corn Soybean Corn CG-CG-SB Rot3
Corn/Soybean/

Winter Wheat
Corn Soybean Winter

Wheat
Corn CG-SB-WW Rot4

Table 4
Description and approximate residue removal rates for the five residue harvest
methods used in this study.

Residue
Harvest Level

Residue Collection Equipment
and Process

Approximate
Residue
Collection
Rate

No Residue Harvest Combine harvester functions as normal. 0%
Harvest Grain

and Cobs
Combine harvester internal mechanisms
are set to break apart cobs and collect
with the grain.

22%

Moderate Residue
Harvest

Combine harvester residue chopper and
spreader are disengaged leaving a windrow
behind the machine. In a second pass a
baler picks up the windrow making
30 � 40 � 80 square bales.

35%

Moderately High
Residue Harvest

Combine harvester residue chopper and
spreader are disengaged leaving a windrow
behind the machine. A rake is used to
collect additional surface residue into a
single windrow. In a third pass a baler
picks up the windrow making 30 � 40 � 80

square bales.

52%

High Residue
Harvest

Combine harvester residue chopper and
spreader are disengaged leaving a windrow
behind the machine. A flail shredder is
used to cut standing stubble and collect
surface residue into a single windrow.
In a third pass a baler picks up the
windrow making 30 � 40 � 80 square bales.

83%
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3.6.1.4. Land management practices. Complete land management practice
descriptions were built for each crop rotationetillageeremoval method combi-
nation as described in Tables 2e4. These were conventional, reduced, and no
tillage for each of the 5 residue removal methods resulting in 15 tillage-removal
method scenarios that were investigated for each crop rotation. As described
previously, 4 crop rotations were modeled resulting in a total of 60 land
management practice scenarios. The timing of operations in each land manage-
ment practice scenario was assumed to be the same for each county across the
state. Table 5 shows the specific operations and their dates for each rotation for
one of the fifteen tillage-removal method scenarios, the reduced tillageehigh
residue harvest case. Each of the operations was selected from the NRCS stan-
dard agronomic management database. This database has nearly 33,000 crops,
tillage practices, fertilization practices, planting methods, harvest practices, and
other standard agronomic operations needed to define a management scenario.
The parameters necessary to inform the environmental process model calcula-
tions are stored as a part of each of these database records. For example, the chisel
plow tillage operation is represented with key parameters such as maximum and
minimum tillage depth, surface area disturbance, residue burial ratios, surface
roughness, and tillage intensity fractions. Vegetations such as corn are described
with growth charts that represent key growth parameters including rootmass,
canopy cover, and height, as well as descriptions of biomass to grain ratios, above
ground biomass, and grain mass.

3.6.1.5. Crop yields. Grain yield for each crop is the input into the integrated systems
model that describes productivity. Each of the models uses grain yield as the metric
to determine residue production for the scenario runs. Each of the 60 crop
rotationetillageeremoval method combinations was run for the nine grain yield
scenarios shown in Table 6. The relationship between corn grain, soybean, and
winter wheat was held fixed through these nine scenarios. This relationship was
determined by developing a linear correlation from the five-year average yield
statistics (Table 6) (2006e2010) provided by USDA NASS (USDA, 2011c). Actual
yields for each county were established using the same NASS production statistics
five-year averages used to determine rotation distributions. The county level aver-
ages for corn grain yield are shown in Fig. 11.

3.6.2. Model execution
Section 3.6.1 described how the model scenarios are defined and assembled.

The following sub-sections describe the integrated model execution steps for the
model scenarios. Specifically, the spatial scale for soils and climate data are
presented for the state of Iowa case study. Model performance and the methodology
for spatial aggregation of results are also presented.

3.6.2.1. Soils data. Each crop rotationetillageeremoval method combination
described previously was run for every soil in the state of Iowa from the NRCS
SSURGO national soil survey database. Each soil in SSURGO is identified by a map
unit symbol and the state of Iowa is comprised of over 10,000 soil map units. A
map unit represents the base spatial unit for each of the model scenario runs. The
crop rotationetillageeremoval method combinations create the unique scenario
runs for each soil map unit. Fig. 7 provides perspective on the level of detail
provided by the integrated systems model. Each of the soil parameters shown are
processed through the soil data module and then delivered to the models within
the integrated framework. The SSURGO soil map unit served as the base spatial
discretized unit for this analysis. Fig. 12 gives perspective on the scale and layout
Table 3
The tillage regimes are represented by specific equipment for each crop with the
rotations.

Conventional Tillage Reduced Tillage No Tillage

Corn Grain Moldboard Plow,
Field Cultivation

Chisel Plow,
Field Cultivation

No Till

Soybeans Field Cultivation No Till No Till
Winter Wheat Field Cultivation No Till No Till
of the SSURGO soil map units. As shown, each outlined region represents
a specific map unit boundary. The legend below the figure provides a description
of the map unit labels. The image is approximately two kilometers across from left
to right, nearly 330 hectares in area, and is comprised of thirteen SSURGO soil
map units.

Fig. 12 represents a 330 hectare section of central Boone County, Iowa. The
entire county is over 148,000 hectares, and is comprised of over 80 SSURGO soil
map units. Approximately 70 of those SSURGO map units need to be considered in
this analysis (water, landfills, etc. can be left out), then accounting for 4 crop
rotations, 3 tillage practices, and 5 removal methods, detailed analysis of residue
removal for Boone County requires 4200 scenario runs of the integrated systems
model. In this study the 9 yield sets shown in Table 6 were run. This created a total
of 37,800 scenario runs for Boone County. The state of Iowa, as mentioned previ-
ously, is comprised of over 10,000 soil map units. Accounting for the crop
rotationetillageeremoval methodeyield combinations applied across the state,
approximately 5.4 million scenario runs were required to investigate the sustain-
ability of agricultural residue removal for energy use. Considering this requirement,
it becomes clear that a fully integrated datamanagement andmodeling approach is
essential for performing this type of study. Manual interaction with each a set of
models is infeasible for generating this fidelity of results. Prior to the development
of this integrated systems model, a user would have to manually perform each
scenario run from each model user interface. Manually executing millions of
scenario runs for each model is not practical, and further complicating this process
is the necessary interactionwith multiple disparate databases required to assemble
each scenario run.

3.6.2.2. Climate data. The climate inputs for each residue removal systems model
run in this study were established at the county level. RUSLE2 core climate data-
bases, provided for each county by NRCS, were used for that model, and CLIGEN and
WINDGEN files used for WEPS simulations were generated through the climate
module for each of Iowa’s 99 counties. Each SSURGO map unit in Iowa is within
county boundaries allowing the set of climate inputs to be directly attributed.

3.6.2.3. Model performance. For each soilecrop rotationetillageeremoval
methodeyield combination, the integrated modeling framework distributes data
and calculates the multi-factor scenario in approximately four seconds (wall-clock
time), running a single thread of a standard multi-core processor desktop work-
station. This time is increased for scenario runs where WEPS yield calibrations are
required. The complete set of runs for this study was distributed on a 32-node
computing cluster comprised of 3.0 GHz Intel Xeon Dual-Core rack-mounted
machines running Microsoft Server 2003 Enterprise�. Each processor core was
given a set of county scenarios to run. More than five million integrated residue
removal modeling runs were performed in less than seven days total. Output
databases were aggregated from the distributed compute nodes into the SQLite
results database.



Table 5
For the four crop rotations identified in Table 2 each operation and its associated timing are identified for the reduced tillageehigh residue harvest scenario.

Continuous Corn Corn/Soybean Corn/Corn/Soybean Corn/Soybean/Winter Wheat

11/1 Year 1 Chisel Plow 4/20 Year 1 Fertilizer Application 4/20 Year 1 Fertilizer Application 4/20 Year 1 Fertilizer Application
4/25 Year 2 Fertilizer Application 5/1 Year 1 Field Cultivation 5/1 Year 1 Field Cultivation 5/1 Year 1 Field Cultivation
5/1 Year 2 Field Cultivation 5/1 Year 1 Plant Corn 5/1 Year 1 Plant Corn 5/1 Year 1 Plant Corn
5/1 Year 2 Plant Corn 10/11 Year 1 Harvest Corn Grain 10/11 Year 1 Harvest Corn Grain 10/11 Year 1 Harvest Corn Grain
10/11 Year 2 Harvest Corn Grain 10/11 Year 1 Shred Standing Stubble 10/11 Year 1 Shred Standing Stubble 10/11 Year 1 Shred Standing Stubble
10/11 Year 2 Shred Standing Stubble 10/11 Year 1 Rake Residue 10/11 Year 1 Rake Residue 10/11 Year 1 Rake Residue
10/11 Year 2 Rake Residue 10/14 Year 1 Bale Residue 10/14 Year 1 Bale Residue 10/14 Year 1 Bale Residue
10/14 Year 2 Bale Residue 11/1 Year 1 Chisel Plow 11/1 Year 1 Chisel Plow 11/1 Year 1 Chisel Plow

5/15 Year 2 Plant Soybeans 4/20 Year 2 Fertilizer Application 4/15 Year 2 Plant Soybeans
10/1 Year 2 Harvest Soybeans 5/1 Year 2 Field Cultivation 9/1 Year 2 Harvest Soybeans

5/1 Year 2 Plant Corn 9/15 Year 2 Plant Winter Wheat
10/11 Year 2 Harvest Corn Grain 6/15 Year 3 Harvest Winter Wheat
10/11 Year 2 Shred Standing Stubble 6/16 Year 3 Rake Residue
10/11 Year 2 Rake Residue 6/17 Year 3 Bale Residue
10/14 Year 2 Bale Residue
11/1 Year 2 Chisel Plow
5/15 Year 3 Plant Soybeans
10/1 Year 3 Harvest Soybeans
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The WEPS model was run in standard NRCS field office mode. WEPS was run in
calibration mode for each SSURGO map unit. Calibrations were set to run
a minimum of ten and a maximum of fifty cycles, stopping when the modeled yield
was within a defined range of the target yield. The RUSLE2 model was also run in
standard NRCS field station mode.

3.6.2.4. County and state level results aggregation. With the model scenario runs
complete and the results database populated, there were two steps required
to establish county, and ultimately state level sustainable agricultural residue
availability for the integrated systems model. These steps were (1) establishing the
maximum sustainable removal rate for each soilecrop rotationetillage combination
for the crop yield in the county and (2) determining the area in each crop rotation
(Table 2) for each county. The integrated systems model outputs results to an SQLite
database, and the following steps were performed through an automated SQL query
executed to that database.

The first step in establishing county level results was determining the highest
sustainable removal rate for each soilecrop rotationetillage combination in each
county. The sustainability criteriawere implemented as follows: (1) total soil erosion
(wind þ water) must be less than the soil T-value (T is the maximum rate of annual
soil erosion allowed for each soil map unit as determined by NRCS); and (2) the
combined SCI must be greater than or equal to zero. The highest of the five removal
methods that meets these criteria was selected as the sustainable removal rate for
each soil map unit and crop rotationetillage combination. As discussed previously
the county level crop yields in this study were acquired from a five-year average of
NASS reported yields. The integrated model was run at approximately 1.25 Mg ha�1

increments (Table 6), and a linear interpolationwas used to scale the residue yield to
the exact county yield. For example, if the five year average yield is 10.2 Mg ha�1,
only the 10.03 and 11.29 Mg ha�1 yield scenario residue values were used to
calculate the result.

The second step in establishing county level sustainable agricultural residue
harvest rates was determining the number of hectares in each of the four crop
rotations for each of the ninety-nine counties in the state. The NASS statistics that
provided county level crop yields as described previously were used to get the
hectares of each crop in each county. An equation set relating the hectares of each
crop to the hectares of the four crop rotations was built and put into matrix form.
Two sets of equations were required to execute this step: one set of counties with
winter wheat production, and one set for counties without winter wheat
production. Given that only one of the four crop rotations included winter wheat,
the first equation for counties with winter wheat sets all of that crops’ hectares as
the cornesoybeanewinterwheat rotation as presented in Table 2. The equation
also sets the matching number of corn and soybean hectares to that rotation,
accounting for the crops that are in each year of the three-year rotation. The
next step in the equation set for counties with winter wheat production is
Table 6
Assumed relationship between corn yield and soybean, winter wheat yields.

Crop Primary Crop Grain Yield Scenarios Used in this Study
(Mg ha�1)

Corn Grain 5.02 6.27 7.53 8.78 10.03 11.29 12.54 13.80 15.05
Soybeans 1.57 1.76 2.13 2.45 2.82 3.14 3.51 3.89 4.20
Winter Wheat 1.25 1.57 1.88 2.19 2.51 2.82 3.07 3.39 3.70
attributing the remaining soybean hectares across the cornesoybean and
cornecornesoybean rotations presented in Table 2. An assumption was made that
20% of the remaining soybean hectares would go to a cornecornesoybean rota-
tion, and 80% would be attributed to a cornesoybean rotation. The final equation
in the set puts the remaining corn hectares in the continuous corn rotation as
presented in Table 2. This equation set is represented in matrix form in Eq. (8).
Within Eq. (8) CG represents corn grain, SB represents soybeans, and WW
represents winter wheat.
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The rotation designations match those listed in Table 2. The matrix representation
facilitates fast and robust calculations from a database. Counties that do not have
winter wheat production utilize an equation set which has the same assumption of
20% of soybean hectares being attributed to cornecornesoybean rotations and 80%
to cornesoybean rotations. Again the remaining corn hectares are attributed to the
continuous corn rotation. Eq. (9) is the matrix representation of the equation set for
counties without winter wheat production.
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An example application of this methodology is shown in Eq. (10), which calculates
the rotation areas (ha) for Lee County in southeast Iowa for the 2008 crop year. Lee
County has winter wheat production per the NASS statistics, so Eq. (8) is used.
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From Eq. (10), the 2008 hectares harvested were 29,542; 25,617; and 1416
respectively for corn grain, soybeans, and winter wheat. The results are provided in
Table 7.

Fig. 13 represents the structure assembled for these steps to be executed within
the integrated residue removal systems model results database. The results



Fig. 11. County level average corn grain yields.

Fig. 12. SSURGO map unit for a roughly 330 hectare
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database is comprised of three components, a soils data component that connects
map units to information within SSURGO, a management data component that
stores the crop rotationetillageeremoval rate combinations used in the study, and
the results data component which is populated with the outputs from the inte-
grated residue removal model scenario runs. These components are all managed in
local SQLite databases, and the aggregation methodology was implemented
through an SQL query. The first step of determining the maximum sustainable
residue removal method finds each unique soilecrop rotationetillage combination
and performs the sustainability test as described previously, identifying the
maximum of the five removal methods that meet the criteria. With this step per-
formed the query moves to calculating the county level results. The SSURGO soils
database is queried to acquire the area that each soil map unit represents for
a specific county. A summation of the area of all soils in a county is performed, and
the percentage of area attributed to each soil in the county is calculated. This
distribution of soils identified for a county is assumed to be the same for all crop
rotations. The hectares of each crop rotation in a county are then calculated as
described above. At this point each soilecrop rotationetillage combination has
a sustainable removal rate identified, and each soilecrop rotation has the area they
account for in a county identified. The query now aggregates the results with the
selection of the tillage scenario of interest. The query performs these steps and
calculations on the over five million records in approximately thirty seconds on
a standard desktop workstation.
area in central Boone County, IA (USDA, 2011b).



Table 7
Rotation area (ha) for Lee County, IA using 2008 production statistics.

Continuous Corn Rotation 7031
Corn/Soybean Rotation 28,812
Corn/Corn/Soybean Rotation 16,483
Corn/Soybean/Winter Wheat Rotation 4249
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4. Results and discussion

4.1. Determining the impacts of tillage management decisions

Fig. 14 provides the county level results for the state of Iowa
comparing the three tillage regimes run for this study, as well as
projecting the sustainably available residue based on current tillage
practices. Current tillage practices were acquired from survey
data from the University of Purdue’s Conservation Technology
Information Center (CTIC, 2011). The average tillage practices for
the state were assumed for each county. Table 8 shows how much
agricultural residue can be sustainably removed in the state of
Iowa, as well as average yields under the different scenarios in
Mg ha�1. The state average yield, AY, from Eq. (11) shown in column
1 of Table 8 represents a simple average of the sustainable yield for
each county across the state, where AYi is the average yield for each
county.

AY ¼
P99

i¼1 AYi
99

(11)

The mass weighted average, AYMW from Eq. (12) shown in
column 2 of Table 8 considers not just the county average yields,
Fig. 13. The “by soil type” results were written to an SQLite database and the picture
but also the total mass produced in each county. In Eq. (12) the
statewide mass weighted average yield is AYMW, TMi is the total
mass produced for each county, and TMS is the total mass produced
in the state.

AYMW ¼
P99

i¼1

�
AYi � TMi

TMs

�

99
(12)

Under conventional tillage practices, which are disruptive and
invasive to the soil, the majority of counties (75 out of 99) in the
state sustainably provide less than 2.25Mg ha�1 of residue. Previous
analyses have quantified operational cost sensitivity to residue yield
(Hess et al, 2009a, 2009b), and the results suggest that 2.25Mg ha�1

is a minimum threshold residue removal rate required to support
harvest and collection operations from an economic and logistics
perspective. Using reduced tillage practices, 59 of Iowa’s 99 counties
can sustainably provide average residue removal rates above the
2.25 Mg ha�1 threshold. Through the implementation of no tillage
practices, all but 10 of the 99 counties average a sustainable residue
yield above the 2.25 Mg ha�1 threshold.

The results in Fig. 14 representing current tillage practices show
that 55 of the 99 counties in the state of Iowa are above the
2.25 Mg ha�1 threshold. As shown in Table 8, the results for the
current tillage practices and five-year average grain yields show that
more than 26millionMg of residue is sustainably available currently
in the state of Iowa. The USDA NASS county level grain yields are
reported as a county average with no distinction between tillage
management practices. The assumption is subsequently made in
using this data that grain yield is the same across all tillage regimes.
The average yield per harvestedMgof residue is nearly 3.31Mgha�1.
d query structure was developed to process the results for scenarios of interest.



Fig. 14. County level residue yield for each of the three tillage management approaches, and the current tillage practices scenario are presented.
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The current total removal potential equates to 27% of the residue
produced.

The final column of Table 8 provides the impact of considering
the 2.25 Mg ha�1 yield threshold. In this data the mass of residue
produced in counties that have an average yield of less than
2.25 Mg ha�1 is discounted. Applying this discount factor has the
greatest impact on the conventional tillage scenario. These results
clearly demonstrate the impact of reducing tillage on the availability
of agricultural residues for bioenergy production.

The 26.5 Tg of residue (nearly all of which is corn stover) sus-
tainably available under current management practices is higher
than the 13.7 Tg of corn stover identified in Iowa by Graham et al.
(2007). There are three primary reasons for this difference.
Graham et al. (2007) placed collection constraints on stover
removal based on the equipment being modeled which are not
present in the sustainability study presented here. Another differ-
ence is that the Graham et al. study utilizes crop production data
from 1995 to 2000, and this study uses data from 2006 to 2010.
Because of this, the Graham et al. study is based on significantly
less corn production in terms of area (4.86 million ha in 2000,
and 5.38 million in 2009) and yield (9.0 Mg ha�1 in 2000, and
Table 8
State total results for the three tillage scenarios and current tillage practices.

State Average
Residue
Yield (Mg/ha)

Mass Weighted
Average Residue
Yield (Mg/ha)

Total Re

Conventional Tillage 1.45 2.27 15.1
Reduced Tillage 2.66 3.48 27.4
No Tillage 3.98 4.48 39.1
Actual Tillage 2.59 3.31 26.5
11.4 Mg ha�1 in 2009). The third reason for this difference is the
computational extent of the studies. The framework approach used
in this study has utilized the latest models and provided an inte-
grated model capable of dynamic investigation of significantly
more soil and land management scenarios.

This study shows that as no tillage practices are adopted, the
potential agricultural residue production across the state becomes
nearly 40 million Mg annually, or about 40% of the total residue
produced. The cellulosic biorefinery facility design presented by
Aden et al. (2002) assumes a plant size of 2000 metric tons per day
and an ethanol conversion rate of approximately 320 liters per Mg
of corn stover. The results from this study suggest that current
sustainable agricultural residue available in the state of Iowa could
support 38 biorefineries producing over 8.5 billion liters of
cellulosic ethanol. With further adoption of no tillage practices,
sustainable residue harvest could support as many as 56 bio-
refineries producing over 13.2 billion liters of cellulosic ethanol
(8.8 liters gasoline equivalent [lge]). Recent International Energy
Agency projections estimate advanced biofuel production capacity
will reach more than 35 billion lge by 2020 (International Energy
Agency, 2012). The results from this study show that sustainable
sidue (Tg) Sustainably Harvestable
as Percentage of Total
Residue Produced

Total Residue Available
Above 2.25 Mg/ha
Residue Yield Threshold (Tg)

15% 4.2
28% 22.5
40% 32.6
27% 19.0
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agricultural residue removal in the state of Iowa can provide nearly
one quarter of the feedstock required for this estimate. Further-
more, these results show that there is a significant spatial variation
of production potential across the state, as well as sensitivity to
tillage practices. Variability in productive potential represents a risk
across the biofuel supply chain and is a key consideration for
decision makers.

Comparing the tillage scenarios in Fig. 14 provides several
conclusions. Counties in the northwest and north central parts of
the state show less sensitivity to tillage. Fig. 15 shows a county
level relative tillage impact factor, which was calculated by
comparing the sustainably available residue for each county
under conventional tillage as a percentage of the residue available
under no tillage practices. Eq. (13) presents this calculation with
TSi as the tillage sensitivity factor for county i, AYiCT representing
the average residue yield for county i under conventional tillage,
and AYiNT representing the average residue yield for county i
under no tillage.

TSi ¼
�
AYiCT
AYiNT

�
(13)

The central and south central parts of the state show much
greater sensitivity to tillage. It is useful to note the inverse rela-
tionship between corn grain yield (Fig. 11) and tillage sensitivity
(Fig. 15). The counties in the state that have consistently high
yields show less sensitivity to tillage. This is important from two
perspectives. The first is that as genetic and agronomic advances
continue to push grain yields higher in lower yielding counties, the
sensitivity to tillage in those counties could potentially decrease.
The second is that more intense tillage is often requiredwith higher
grain yields due to the large quantity of residue left on the field.
The consequence is that removing residue at sustainable levels has
the potential to allow land managers to do less tillage. The data in
Fig. 15 in conjunction with the final column of Table 8 provides
critical information for bioenergy producers considering the use of
agricultural residues under current management practices. Much of
the state has the ability to provide significant quantities of this
resource, but may require management changes to sustainably and
economically collect large quantities of this resource. The north-
west and north central parts of the state, which are less sensitive
to tillage, will rely less on management changes to facilitate
large-scale residue harvest.
Fig. 15. Identifying if residue removal in a particular area is sensitive to tillage is
important because that area may require management changes from current practices
to establish sustainable residue harvest. Lower sensitivity to tillage is desirable in this
scenario.
4.2. Integrated model verification and sensitivity

The models used in this study were integrated with the explicit
requirement that source code could not be altered through the
integrated process. This is important for preserving the extensive
investment into model development and validation for each of the
models. A set of verification runs was assembled and performed to
ensure that the results from the integrated model resulted in the
same conclusions as utilizing the NRCS field office versions. Table 9
shows the results of this comparison from an Adair County example.
Two soils with differing characteristics in terms of slope and organic
matter were selected. The integrated andNRCS field office version of
the models were compared for a reduced tillage, a cornesoybean
rotation, and removal rate considering two different yield levels
for each of the soils. In all cases the results from the integrated and
NRCS field office versions of the models provided the same
conclusions about the sustainability of the particular residue
removal scenario. Slight differences in the specific erosion values for
RUSLE2 can be attributed to significant digit rounding differences
between the NRCS and integrated versions of the model. The results
extracted from the RUSLE2 API have up to ten significant digits for
each value, whereas the results presented through the graphical
interface of the model are given with two or three significant digits
in most cases. Differences in the results for WEPS can be attributed
to the ongoing development in preparation for a new version release
to NRCS field offices. The version coupled in the integrated model
represents an updated revision of the code as compared to the
current NRCS field office version. The ability to quickly exchange
model versions is an important feature of the integrated framework
used in this study. During development and execution of the model,
important changes to theWEPS code were made that created better
results. For this study, we were able to quickly couple to the latest
version in the software repository.

A set of 10 geographically dispersed comparisons were per-
formed to compare the results from the integrated model and NRCS
field office versions. Table 9 presents a subset of these comparisons.
Specifically, Table 9 shows two unique soils from Adair County,
Iowa. The “876B Ladoga silt loam, benches, 2e5 percent slopes”
represents a higher organic matter and moderate slope soil,
while the “175C2 Dickinson fine sandy loam, 5e9 percent slopes,
moderately eroded” represents a lower organic matter and high
slope soil. The 876B soil results are presented for a cornesoybean
rotation assuming reduced tillage management practices and are
given for all five residue removal rates. Two different crop yield
scenarios are shown for 876B in Table 9 also. The 876B soil shows
little susceptibility to wind erosion with the exception of the
highest residue removal rate, which cuts down the standing corn
stubble that serves as a wind break. This soil also shows a reason-
ably high water erosion rate, which progressively increases as the
residue removal rate increases. This is an expected result because
the surface cover provided by the residue to protect the soil is less
with higher removal rates. In all cases the decision about whether
the removal rate is sustainable is the same using the integrated
model or the NRCS models. The RUSLE2 results are within
a 0.4 Mg ha�1 difference, which is approximately 3.5% of the
tolerable soil loss limit for this soil. The WEPS results are within
a 0.16 Mg ha�1 difference, which is less than 1.5% of the tolerable
soil loss difference. The qualitative SCI results all provide the same
conclusion for the sustainability of the practice. Looking at the
higher slope, lower organic matter soil 175C2, shown in the bottom
portions of Table 9, the results between the integrated model and
field office versions will lead to the same decisions about sustain-
ability of the management practices. This soil has a higher sand
fraction in the top soil layer, which results in higher wind erosion
rates. The results of the investigation for this soil show that row



Table 9
Results comparing the integrated model outputs with the NRCS field office versions for two soils with different characteristics and two different yield scenarios.

Soil: 876B Ladoga silt loam, benches, 2e5 percent slopes
CorneSoybean Rotation: Reduced Tillage Practices

Corn Yield: 10.03 Mg ha�1

Soybean Yield: 2.82 Mg ha�1
Corn Yield: 7.53 Mg ha�1

Soybean Yield: 1.88 Mg ha�1

Removal Rate Model Outputs (Erosion Rates in Mg ha�1) Removal Rate Model Outputs (Erosion Rates in Mg ha�1)

WEPS
Integrated

WEPS
NRCS

RUSLE2
Integrated

RUSLE2
NRCS

SCI
Integrated

SCI NRCS WEPS
Integrated

WEPS
NRCS

RUSLE2
Integrated

RUSLE2
NRCS

SCI
Integrated

SCI NRCS

NRH 0.00 0.00 8.80 8.70 0.20 0.19 NRH 0.00 0.00 11.30 11.70 �0.01 �0.01
HCG 0.00 0.00 9.60 9.40 0.05 0.08 HCG 0.00 0.00 12.30 12.60 �0.11 �0.12
MRH 0.00 0.00 10.20 10.10 0.03 0.03 MRH 0.00 0.00 13.00 13.20 �0.16 �0.17
MHH 0.00 0.00 11.30 11.00 �0.08 �0.04 MHH 0.00 0.00 14.00 14.30 �0.23 �0.23
HRH 2.31 2.47 14.60 14.30 �0.34 �0.34 HRH 3.41 3.52 17.70 17.90 �0.55 �0.57

Soil: 175C2 Dickinson fine sandy loam, 5 to 9 percent slopes, moderately eroded
Continuous Corn Rotation: Reduced Tillage Practices

Corn Yield: 10.03 Mg ha�1 Corn Yield: 7.53 Mg ha�1

Removal Rate Model Outputs (Erosion Rates in Mg ha�1) Removal Rate Model Outputs (Erosion Rates in Mg ha�1)

WEPS
Integrated

WEPS
NRCS

RUSLE2
Integrated

RUSLE2
NRCS

SCI
Integrated

SCI NRCS WEPS
Integrated

WEPS
NRCS

RUSLE2
Integrated

RUSLE2
NRCS

SCI
Integrated

SCI NRCS

NRH 0.00 0.00 5.90 5.80 0.43 0.43 NRH 0.00 0.04 8.20 8.30 0.16 0.17
HCG 0.22 0.13 8.20 7.80 0.17 0.16 HCG 0.93 0.38 11.00 11.20 �0.11 �0.09
MRH 0.69 0.47 9.50 9.20 0.08 0.04 MRH 1.86 1.14 12.50 12.80 �0.25 �0.22
MHH 1.14 1.01 11.70 11.40 �0.17 �0.14 MHH 3.04 2.71 15.30 15.50 �0.45 �0.43
HRH 24.88 23.04 20.20 20.20 �1.43 �1.40 HRH 31.32 31.76 24.70 24.70 �1.76 �1.90
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cropping practices on this field have to be handled with caution,
and residue removal will almost certainly result in negative
impacts on the future productive capacity of the soil. For the 175C2
soil, the wind erosion rates under the high residue harvest (HRH)
cases are more than double the tolerable soil loss rate for the soil.
These cases present the largest difference between the integrated
model and NRCS field office versions, showing a nearly 8%
difference.

The results in Table 9 present two different soils, two different
crop rotations, and two different grain yield scenarios, and in all
cases the integrated model leads to the same decisions as the NRCS
field office versions of the models. In the test case scenarios, in
addition to those presented in Table 9, the sustainable residue
removal conclusions were the same between the NRCS field office
and integrated models.

4.3. Framework evaluation

The integrated modeling approach developed here provides
amore comprehensive understanding of the residue removal issues
than previous single model evaluations. The current integrated
model is extensible for investigating residue removal scenarios for
land management practices, soil conditions, and climatic condi-
tions across the nation. The model integration framework has met
the requirements specified previously for the integration frame-
work. First, seamless integration of existing models was satisfied
for the RUSLE2, WEPS, and SCI models integrated for this study. The
tools could then be used within the system in the same way they
were utilized as standalone executables. Second, plug-and-play
interaction is available with these tools. The system can function
with any combination of the three models in the simulation.
The most important plug-and-play function supported by the
framework is the nearly seamless exchange of model versions. The
tools used in the framework are continually being improved and
refined, and their results are used to administer policy. For this
integratedmodel to be an effective decisionmaking tool, it needs to
be able to quickly and effectively make use of new model releases.
Third, intuitive, real-time interaction is supported for each model.
There are two components to integrating new models into
the framework: (1) ensuring the representation of the input data is
correct for the new model in the system, and (2) ensuring the
framework scheduling algorithms are managing the necessary data
exchanges and model interactions. Considering these two things,
the specific level of effort for new model integration will be model
dependent. The computational engine and data management
tools currently in place will typically facilitate initial integration in
a matter of weeks.

The ability to integrate the selected models without changes to
model source code accelerated the development of this integrated
model. The tasks of selecting the models and assembling the data
and information sources for the study required significantly more
effort than model integration tasks. This can be attributed to the
use of the VE-Suite integration framework.

5. Conclusions

Determining sustainable removal methods for agricultural
residues requires assessing multiple agronomic and environmental
factors simultaneously. This paper has presented an integrated
residue removal analysis tool that supports the investigation of
sustainable residue removal relative to water erosion, wind erosion,
and soil organicmatter constraints. The residue removal analysis tool
has been builtwith theVE-Suitemodel integration toolkit. TheWEPS,
RUSLE2, and SCI models have been coupled in the residue removal
analysis tool. The modeling tool includes a robust and generic set of
data interfaces supporting interaction with the wide variety of
data sources required for these assessments. These data interfaces are
managed through three data modules (climate, soils, and manage-
ment), which facilitate the interactionwith raw data sources and the
formatting of data for input into the disparate models.

The integrated analysis approach developed here has enabled
a more comprehensive assessment of sustainable agricultural
residue removal than has been performed previously. The complex
interactions between soils and land management practices creates
the need for dynamic integrated modeling of the processes that
potentially limit access to residues, and requires extensive model
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scenario runs to effectively capture the land management
scenarios. The soilecrop rotationetillageeremoval rate combina-
tions in this study total to nearly 5.4 million integrated model
scenario runs. This level of fidelity of analysis is infeasible without
using an integrated modeling framework.

The residue removal analysis tool developed was used to assess
the currently sustainably accessible agricultural residue in the state
of Iowa. This assessment included an investigation of the impact of
tillage management practices on residue availability. The results of
the assessment show significantly increased residue harvest
potential for reduced and no tillage management practices. The
results also demonstrate that nearly 26.5 million Mg of residue is
sustainably accessible under currently management practices,
enough to produce over 8.5 billion liters of cellulosic ethanol. The
fidelity of results generated for this analysis also enable investiga-
tion of residue availability under economic and logistics constraints,
i.e. the impact of the recognized lower threshold of 2.25 Mg ha�1

average yield for economic and logistic residue removal. This type of
data and assessment is critical for supporting the development of
a bioenergy industry that uses agricultural residues as a biomass
resource while assuring that our land management practices
maintain our soil resources.

The integratedmodel approach to exploring the sustainability of
agricultural residue removal creates opportunities for exploring
additional limiting factors and potential impacts of residue removal.
For example, additional models such as DAYCENT and EPIC can be
plugged into the system to simulate the nitrous oxide gas flux
impacts of residue removal. With the existing integration frame-
work in place, adding these additional models will require two
things: (1) preparing the data modules to format the input data
correctly for the additional models, and (2) developing the software
wrappers that can execute the additional models when instructed
by the computational engines. Formodelswith API’s, these tasks are
straightforward with the existing framework. Models without API’s
can be more challenging to integrate.

There are limitations to the current study. Higher fidelity land
management practice data is becoming available via the USDA
Cropland Data Layer mapping project. Utilizing this data in the
futurewill provide better cropping rotation data.Moreover, research
is emerging that shows that as crop yields get higher, the harvest
index (ratio of grain to plant biomass) gets larger also. This would
mean that less biomass is available at higher yields. Consideration of
this harvest index change has not been considered here. The inte-
grated modeling framework also needs to be extended to include
quantitative soil carbon assessments, as well as GHG cycles and
water quality. As discussed previously, there are models available
that can capture these characteristics.

Further research is needed to extend this analysis to both
smaller and larger scales. In-field variability of grain crop yield and
soil characteristics can be significant, and sub-field is the scale
where residue harvest decisions will be made. In addition this
integrated residue removal modeling system needs to be extended
to high spatial fidelity yield data. This will enable investigation of
the impact this in-field variability has on sustainable residue
availability. Another potential application of this type of integrated
modeling tool is to explore the capability of current residue har-
vesting technologies, as well as the need for new residue harvest
equipment. Another important question is what are the potential
impacts of climate change on sustainable residue removal rates. For
example, the frequency and intensity of extreme events such as
high winds and intense rainfall associated with climate change
could increase the negative environmental impacts of residue
removal, specifically erosion (Bates et al., 2008). This question is
being investigated as part of the next steps for this integrated
model. The framework developed here can potentially accept
a climate change dataset as the climate data input with the Climate
Data Module being adapted to format the climate change dataset
for each model input.
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