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This paper proposes a hybrid inventory policy with split delivery under regular and surge demand. The
combination of regular and surge demand can be observed in many areas, such as healthcare inventory
and humanitarian supply chain management. The arrival rate of regular demand is typically higher than
the arrival rate of surge demand, whereas the volume of regular demand is typically lower than the
volume of surge demand. This paper proposes an inventory management model that considers both
emergency and regular replenishments corresponding to both demand patterns. The equilibrium
equations developed for this model are based on the level crossing theory. These equations are used to
develop a search-based heuristics to identify near optimal inventory management policies. Numerical
results show that the proposed hybrid inventory policy with split delivery outperforms similar hybrid
inventory policy without split delivery when holding and shortage costs are relatively low.

Crown Copyright & 2015 Published by Elsevier B.V. All rights reserved.
1. Introduction

Each year, millions of people around the globe are affected by
man-made and natural disasters, such as terrorist attacks, earth-
quakes, disease outbreaks, volcanic eruptions, floods, tsunamis,
storms, and hurricanes. These disasters trigger a surge demand for
humanitarian products such as, medication, food, water, etc.
Consequently, hospitals, retailer stores and manufacturers face a
surge demand for their inventories. Having the necessary resour-
ces to respond to surge demand orders in a timely manner is
important because a shortage of these supplies impacts people’s
lives. Shortages of supplies also have financial impacts. United
Nations International Strategy for Disaster Reduction Secretariat
(UNISDR) (2012) estimates that in 2011 the global economic losses
due to disasters ranged between $350 billion and $380 billion.
Within a small period of time, the probability that a particular
facility faces surge demand due to a disaster is very low. However,
the size of a surge demand is typically very large. Providing
humanitarian relief on a timely manner to victims could turn into
a major challenge if hospitals, retailers, and manufacturers have
not planned well in advance. For example, the lack of a well-
evier B.V. All rights reserved.
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coordinated relief plan during the earthquake in Haiti delayed the
delivery and distribution of the necessary supplies (Beresford and
Pettit, 2012). Similarly, in 2005, Hurricane Katrina greatly impac-
ted the economy of a number of southern states in the US. Many
manufacturers and retailers ran out of stock of certain emergency
items due to an overwhelmingly high demand which they were
not prepared to handle. One lesson learned from these experiences
is that being proactive, by developing a disaster management plan,
has the potential to save lives, reduce financial loss, protect busi-
ness assets, help businesses recover faster, and provide greater
security and control in case of a disaster (Belson, 2005). Devel-
oping a disaster management plan is very important for healthcare
providers and their suppliers because many types of medicines are
critical to saving lives. Thus, healthcare providers are pressured to
carry inventories of medicines that are needed in case of a disaster.
Some of these inventories are very expensive and often have a
short shelf-life, such as blood and medicines. Identifying policies
that can help to manage these inventories is crucial to responding
on-time to disasters, and therefore saving lives and money.

Managing the inventory of products under surge demand could
be challenging for both humanitarian services (e.g. Beamon and
Kotleba, 2006; Balcik and Beamon, 2008) and the manufacturing
industry (e.g. Hendricks and Singhal, 2003, 2005). In traditional
manufacturing, if the demand forecasts are inaccurate or the order
replenishment does not follow the plan, it leads to delayed orders
or at worst canceled orders. However, in healthcare delivery (esp.
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hospitals) or humanitarian services, a shortage could make the
difference between life and death. Therefore, healthcare providers
often maintain high service levels for life-saving items. This is
achieved by either increasing the inventory level or through
expedited shipments. Both ways are expensive. In order to mini-
mize the inventory holding cost, while maintaining high service
levels, healthcare providers and their suppliers need to develop
more sophisticated and proactive inventory management policies
for items that may face surge demand. Motivated by the chal-
lenges of meeting surge demand, this paper proposes a hybrid
inventory model under regular and surge demand. This paper
incorporates the concept of split delivery in a hybrid inventory
policy. Split delivery could be an effective way of reducing
inventories while maintaining acceptable service levels. Split
delivery considers the scenario in which there is a single supplier
who replenishes all orders but the supplier could split the delivery
of the orders with multiple shipments. By using split delivery, a
service provider can hedge against the risk of possible long lead-
times when the lead-times of the suppliers are stochastic. As split
delivery has the potential to reduce the long lead-times, using this
procedure a service provider is able to reduce the safety stock
needed to maintain high service targets.

The stochastic lead time of a standard delivery may cause
longer time to fulfill a replenishment order in an inventory system
facing regular and surge demand. An inventory model with stan-
dard delivery and stochastic lead time may cause longer lead time
and requires excess inventory to avoid shortage, especially when
the required service level is high. Alternatively, an inventory sys-
tem that allows split delivery can reduce the dependency on single
deliveries and allows orders to arrive in a different time frame. A
single replenishment order is broken into multiple replenishment
orders, therefore avoiding possible long lead times. Splitting the
delivery of a shipment has the potential to reduce the safety stock
required to maintain high service targets. As a result, split delivery
of regular order conjunction with emergency order allows reduc-
tion in the safety stock and realizes savings in the holding and the
shortage costs at the expense of a possible increase in ordering
cost. Cost tradeoff between split and standard deliveries depends
on various input parameters such as unit holding cost, shortage
cost, delivery lead time, ordering cost, regular demand arrival rate
etc. It can be shown that considerable cost savings can be obtained
from split delivery depending on various instances. Moreover, the
existence of surge demand forces a service provider to maintain
high levels of safety stock in order to provide high service levels.
Specially, when surge demand has a high arrival rate with a large
demand volume, an inventory system that relies on standard
delivery would require excess inventory to avoid shortage. As split
delivery allows orders to arrive in a different time frame, it allows
adjusting the safety stock more frequently. This results in reduc-
tion of the safety stock, and savings in the holding and the
shortage costs.

Motivated by the challenges of surge demand and by the
knowledge that split delivery of orders is an effective way of
reducing inventories, this paper considers a continuous-review
inventory system for a single product that faces regular and surge
demands and allows multiple outstanding orders. The goal is to
identify an inventory management policy that minimizes cost
while maintaining a high service level. The inventory policy
identifies two reorder points, regular order point and emergency
order point, and two order quantities, regular order quantity and
emergency order quantity. We propose a mathematical model that
is based on the level crossing theory (LCT) in order to capture the
delivery split. Furthermore, we develop a Tabu search-based
algorithm to find high quality solutions in a reasonable amount
of time.
This paper uses LCT to obtain the long-run average cost under a
given policy. Applying LCT to obtain equilibrium distribution has
advantages over other methods such as the Markov decision
process and queuing theory. The state-action space in the under-
lying semi-Markov decision process is large for the problem
addressed in this paper. The queuing theory requires extensive,
tedious and time consuming analysis to derive integral equations
from the Lindley recursion in order to obtain the probability
density function in complex stochastic models with state depen-
dencies . LCT is a faster and easier method to derive equations for
the probability density. The classical renewal theory is often used
to model a variety of continuous review inventory problems that
consider the random demand process as a compound Poisson
process with a general distribution for demand sizes (Brill, 2000;
Beamon and Kotleba, 2006). Under an assumed order policy, such
as ðs; SÞ or ðR;Q Þ, the analysis of those studies relied on the
assumption that back orders or lost sales are triggered only during
the replenishment lead time. This paper allows back orders or
emergency orders to be triggered at any point in time. Therefore,
the classical renewal theory is not an option to obtain the equili-
brium distribution.

In summary, this paper contributes to the existing literature in
the following ways: (a) it incorporates the concept of delivery
splitting into the analysis of a continuous review, stochastic
inventory model under regular and surge demand; (b) it uses LCT
to derive a stationary distribution function of the inventory level
for a continuous review inventory system characterized by
(i) regular and surge demand, (ii) split delivery, (iii) variable lead
time, two reorder points, and two types of orders, and (iv) short-
age cost; (c) it considers inventory levels to be discrete states
while most of the papers considered the inventory level as con-
tinuous states during applying LCT.

The remainder of this paper is organized as follows. Section 2
provides a review of the relevant literature in the area of the
inventory management and the humanitarian supply chain man-
agement. Section 3 discusses the modeling approach based on the
level crossing theory. Section 4 presents a Tabu search-based
heuristics to solve the problem. Section 5 presents the results of
the numerical analysis. This section also tests the performance of
the Tabu search heuristics and proposed hybrid inventory policy
under various scenarios. Finally, Section 6 summarizes the findings
and concludes the paper.
2. Relevant literature

Studies on optimizing the inventory system of emergency
items in support of humanitarian operations have mostly been
focused on strategic and operational planning. For example, pro-
blems which coordinate facility location and inventory planning
decisions under emergency situations have been studied by a
number of researchers, such as Beamon and Kotleba (2006), Chang
et al. (2007), Balcik and Beamon (2008), Lodree and Taskin (2008),
Rottkemper et al. (2011), Ozguven and Ozbay (2012), Rawls and
Turnquist (2010), Campbell and Jones (2011), Jin and Roni (2011),
Jin et al. (2012), Roni and Jin (2013), etc. Stochastic inventory
control with two types of demand classes has been studied for
decades. A large body of literature has studied this problem in
different settings. For example, Wang et al. (2013) studied the
rationing policy in an inventory system with two demand classes
and different service criteria for backorders with a continuous
review (R, Q) system; Koçağa (2007) studied a single-echelon
spare parts distribution system with two demand classes and
proposed a static rationing policy that would ration stock to the
non-critical class. Other researchers that studied continuous
review stochastic inventory models with two types of demand are
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Isotupa (2011, 2013), Fadıloğlu and Bulut (2010), Arslan et al.
(2007), Benjaafar et al. (2010), and Deshpande et al. (2003).
Inventory control models with two types of demand classes under
periodic review have been studied byWang et al. (2013), Möllering
and Thonemann (2010), Chew et al. (2013), Hung et al. (2012),
Frank et al. (2003), and Pourakbar and Dekker (2012). The mixture
of demand processes have been studied by Azoury et al. (2012),
Presman and Sethi (2006), and Sobel and Zhang (2001). The hybrid
inventory management policy with two reorder points and two
order quantities with split delivery has been the subject for a
number of studies in the literature. Some of the studies related to
the split delivery problem have been conducted by Janssen et al.
(2000), Ching-Jong and Wen-Hwa (1994), Mohebbi and Posner
(2002), Moinzadeh and Lee (1989), Glock and Ries (2013), and
Janssen et al. (2000) showed the advantage of delivery splitting
from the point supplier's point of view. Ching-Jong and Wen-Hwa
(1994) considered an inventory system in which the replenish-
ment of more than one item is triggered whenever the inventory
level drops to the order point or lower, and they developed a
procedure that minimizes the sum of the expected holding and
shortage costs. Mohebbi and Posner (2002) developed a
continuous-review inventory system with lost sales, non-unit-
sized demand, multiple replenishment orders outstanding, and
split deliveries. Moinzadeh and Lee (1989) considered an inven-
tory system in which orders might arrive in two shipments and
presented the operating characteristics and an approximate cost
function for such a system. Glock and Ries (2013) presented
mathematical models for a multiple-supplier single-buyer inte-
grated inventory problem with stochastic demand and variable
lead time and studied the impact of the delivery structure on the
risk of incurring a stockout during lead time.

The hybrid inventory management policy with two reorder points
and two order quantities has been studied by Moinzadeh and Nah-
mias (1988), Mohebbi and Posner (1999), and Roni et al. (2015). The
study by Moinzadeh and Nahmias (1988) analyzes the inventory
management policy of a continuous review system. The model pro-
posed in this study considered four decision variables: regular reorder
level, emergency reorder level, regular order quantity, and emergency
order quantity. The model assumed: full backorders, constant but
different lead times for the two types (regular and emergency) of
orders, and at most one outstanding (regular and emergency) order.
The authors derived an approximate expression for the average cost,
and presented a heuristic procedure to determine the value of the
decision variables. Mohebbi and Posner (1999) developed a model to
manage the inventory for products with non-unit-sized demands. This
paper also proposed a four-parameter inventory management policy
to determine the following: regular order level, emergency order level,
regular reorder point, and emergency reorder point. The paper
assumed compound Poisson demand, at most one outstanding (reg-
ular and emergency) order, and exponentially distributed lead time for
both orders. The study gave an explicit expression of the average cost
function. Roni et al (2015) proposed a hybrid policy for a stochastic
inventory system facing regular demand and surge demand with two
reorder points and two order quantities. The following is a list of some
of the continuous review inventory models for managing emergency
orders: Johansen and Thorstenson (1998), Axsäter (2007), Kalpakam
and Sapna (1994), Huang et al. (2011), and Mamani and Moinzadeh
(2014). These studies are closely related to the work presented in this
paper. Other studies that focus on periodic review stochastic inventory
models with regular order mode and expedite order mode are Sheo-
puri et al. (2010), Jain et al. (2011), Arts et al. (2011), Cheaitou and Delft
(2013), and Zhang et al. (2012).

This paper uses LCT proposed by Brill and Posner (1977) in
order to derive the distribution of the inventory level at the
equilibrium, under a given inventory management policy. Several
researchers have used LCT in stochastic inventory systems in order
to derive the stationary probability distribution of inventory level
in continuous review models. For example, Brill and Chaouch
(1995) used LCT to derive the distribution function and the cor-
responding expected value of on-hand inventory, size and fre-
quency of orders, and total cost for different inventory manage-
ment policies. Mohebbi and Posner (1998) applied LCT to derive
the distribution of the on-hand inventory in a continuous-review
inventory management system with: compound Poisson demand;
Erlang, and hyper-exponentially distributed lead times; and lost
sales. Mohebbi (2003) used LCT to compute the stationary dis-
tribution of the on-hand inventory in a continuous review system.
The paper considered supply interruptions in which a supplier can
assume one of the two states available or unavailable at any point
in time. The system was modeled using a continuous-time Markov
chain. Mohebbi (2006) used LCT to derive the stationary dis-
tribution of the inventory level in a limited capacity production-
storage system with lost sales, stochastic piecewise linear pro-
duction system, and compound Poisson demands. Chaouch (2007)
used LCT to derive the long term inventory distribution function
and determine replenishment strategies. The paper considered the
scenario when buyers are faced with price-discounting campaigns
which are random. As demonstrated above, most of the existing
literature considered the inventory level to be in continuous states.
Instead, this paper considers the inventory levels as discrete states
of the system, and uses LCT to obtain the equilibrium distributions
of inventory levels under a given inventory policy.

This work contributes to the existing literature related to stochastic
inventory system facing regular demand and surge demand. The
modeling, solution approach and analysis in this paper are unique in
that there are no hybrid stochastic inventory models in the literature
characterized by (1) regular and surge demand, (2) split delivery,
(3) variable lead time, (4) two reorder points and two types of order,
and (5) shortage cost. Moreover, we are not aware of any stochastic
inventory model that considers the inventory level as discrete states
while applying LCT. The model we propose is inspired by the chal-
lenges faced by healthcare providers or humanitarian logistics provi-
ders in managing their emergency supplies in responding to surge
demands.
3. Model formulation

Consider a single item inventory management system facing two
types of demands, regular demand and surge demand. The regular
demand follows a Poisson process with an arrival rate equal to λ1.
The size of demand is one unit. The surge demand follows a com-
pound Poisson process with an arrival rate of λ2. The demand size
follows a discrete distribution. The minimum demand size is a,
maximum size is b, and rk is the probability that demand is equal to
k (kA ½a;b�). In reality, the size of surge demand is random and its
range is wide. However, for sake of simplicity we assume that surge
demand takes values within the interval ½a; b�. In order to address
this fact, we develop a discrete distribution function given by Eq.
(12) in Section 5.1. Because of the nature of the two demand types,
we assume λ1 is larger than λ2 , and a41 .

The inventory management policy is defined by the following
four decision variables: R denotes the reordering point for regular
order, Q denotes the regular order quantity, Re denotes the reor-
dering point for emergency order, and Qe denotes the order quan-
tity for each emergency order. When the inventory position (stock
on-handþstock on-order) is equal to or decreases below reorder
point R, an order of size Q is placed. Thus, immediately after
ordering, the inventory position is between R and RþQ. Let n¼ ⌈
R�Re
Q ⌉ express the smallest integer greater thanR�Re

Q . Hence, the lar-
gest amount of a single replenishment order is nQ if all n orders are
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placed with a single supplier. Incorporating the concept of delivery
splitting, we allow for each replenishment order of size i*Q (i ¼
0,1,2, ……, n-1 ) to be delivered in i batches of size Q. This inventory
control policy can also be described in terms of the inventory level
(stock-on-hand). Hence, an alternative description for the control
policy in terms of the inventory level is as follows: the policy
requires placing orders of size Q for every down crossing of level R-
iQ (i¼0,1,2, ……,n-1) when tracing the inventory level process. This
implies that when the inventory level is between max
Reþ1;R� iQð Þ and ðRþQ � iQÞ, there are i ði¼ 0;1; ;…;nÞ out-
standing orders, each with the size Q . The replenishment lead time
for regular order is exponentially distributed with a mean of σ�1.
The replenishment lead times of orders are independent.

An emergency order is placed when the inventory level
becomes less than or equal to the emergency reorder point Re. The
corresponding order quantity is uQe is the smallest positive inte-
ger that can push the inventory level above Re. There-
fore,u¼ ðk�wþReÞ

Qe
þ1

j k
, where w is the inventory level just before a

surge demand of size k units. Note that, if the inventory level w, at
the time when surge demand arrives, is above R and if the size of
surge demand is kZw� Re, then both regular orders and an
emergency order are placed. The lead time for the emergency
orders is assumed to be zero. The model assumes that there is a
shortage cost when the inventory level goes below Reþ1.

3.1. Modeling framework

The primary goals of this subsection are to develop the sta-
tionary distribution function of each inventory level and develop
the total cost function. LCT is used to derive the stationary
Fig. 1. Sample of path of t
distribution function of inventory level w. In order to apply LCT, it
is necessary to define the State, Sample Path, Level, Up Crossing
and Down Crossing of the system. These definitions of State,
Sample Path, Level, Up Crossing and Down Crossing are similar to
Roni et al. (2015). The LCT starts with constructing a sample path
of the process over time. An important step of the LCT is to con-
struct a typical sample path of the underlying stochastic process.
Correct construction of a sample path requires a thorough
understanding of the dynamics of the model. Although in many
applications the construction of sample paths is straightforward,
the construction of sample paths may be a nontrivial or even a
challenging task in complex models with state dependencies . Let
W tð Þ; t40
� �

be the inventory level at time t and Dðw; tÞ be the
duration of the inventory level at w up to time t. The inventory at
any instant can be between wA Reþ1;RþQ½ �. Let P wð Þ ¼ lim

t-1
Dðw;tÞ

t

denote the asymptotic probability of inventory level w. When W
tð ÞA max Reþ1;R� iQð Þ;Rþði� 1ÞQ½ � there are i ði¼ 0;1;…;nÞ
outstanding orders. A sample path is a typical tracing of the
inventory level, WðtÞ, over time. A typical sample path is shown
with numerical values in Fig. 1. The sample path shows how the
inventory level changes over time. The sample path for WðtÞ goes
down by small jumps, and sometimes it goes down by big jumps
(as shown in Fig. 1). The sample path is generated for the case
when R¼ 20;Q ¼ 5;Re ¼ 5; and Qe ¼ 3. The inventory level starts
with RþQ ¼ 25. When either the regular demand or surge
demand arrives, inventory level goes down. Regular and surge
demand arrival can be visualized by the decrease of inventory
level. These decreases in the inventory level by a small jump or by
a big jump are caused by the arrival of regular and surge demand
respectively.
ypical inventory level.
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The sample path goes up when regular and emergency orders
are received. The state space of S can be divided into sub spaces
based on the number of outstanding regular orders. These sub
spaces are called Pages. Initially, when the inventory level
WðtÞA Rþ1;RþQ½ �, there is no outstanding order. This sub space is
called page-0. When inventory level WðtÞA R� Qþ1;Rþ1½ �, there
is one outstanding order. So, the subspace wA R� Qþ1;Rþ1½ � is
called page-1. Similarly, when tð ÞA max Reþ1;R� iQð Þ;½ Rþði� 1Þ
Q � , there are i ði¼ 0;1;…;nÞ pages. Fig. 1 shows 4 pages and their
corresponding inventory level ranges.

3.2. Development of the balancing equations

Now we will develop the balancing equation of each page
i¼ 0;1;…;n.

3.2.1. Page-0
In page-0, the sample path enters into the following levels

wA ½Rþ1;RþQ �. Page-0 has two types of down crossing, unit
down crossings caused by regular unit demand and jump down
crossings caused by surge demand. In this page, up crossings only
occur due to the receipt of regular orders. Let α define the size of a
demand that causes down crossing of inventory level w or the
amount of received order that causes up crossing of inventory
level w. Based on LCT, the balance equation for page-0 can be
formulated by Eq. (1).

λ1P wð Þþλ2
XRþQ

α ¼ w

Xb
k ¼ max α�wþ1;af g

rk

0
@

1
AP αð Þ

¼ σ
XR

α ¼ w�Qð Þ
P αð Þ8wA Rþ1;RþQ½ � ð1Þ

In Eq. (1), λ1P wð Þ is the down crossing rate due to regular
demand, λ2

PRþQ
α ¼ w

Pb
k ¼ max α�wþ1;af g rk

� �
P αð Þ is the down cross-

ing rate due to surge demand. At the right hand side σ
PR

α ¼ ðw�Q Þ
P αð Þ

is the up crossing rate due to regular order replenishment.

3.2.2. Page-i¼ 1;2;⋯;n� 1
For each page i¼ 1;2;⋯;n� 1, the sample path is in the fol-

lowing levels wA ½RþQ � ðiþ1ÞQþ1;RþQ � iQ �. This page also
has two types of down crossings, unit down crossings and jump
down crossings. In page-i jump down crossings could also be
caused by a surge demand in any page-j, where j¼ 0;1;⋯; i� 1. In
page-i up crossings occur due to both regular order replenish-
ments from page-i and page- iþ1ð Þ. The balance equation is for-
mulated by Eq. (2).

λ1P wð Þþλ2
XRþQ�iQ

α ¼ w

Xb
k ¼ max α�wþ1;af g

rk

0
@

1
AP αð Þ

þλ2
Xi�1

j ¼ 0

XRþQ�jQ

α ¼ RþQ þ1� jþ1ð ÞQ

Xb
k ¼ max α�wþ1;af g

rk

0
@

1
AP αð Þ ð2Þ

¼ iσ
Xw�1

α ¼ RþQ� iþ1ð ÞQ þ1;

P αð Þþ iþ1ð Þσ
XRþQ� iþ1ð ÞQ

α ¼ max w�Q ; Re þ1ð Þ
P αð Þ

8wA RþQ � iþ1ð ÞQþ1;RþQ � iQ½ �; i¼ 1;2;⋯;n� 1

On the left hand side of Eq. (2), λ1P wð Þ is the down crossing rate
due to regular demand on page-i, λ2

PRþQ�iQ
α ¼ w

Pb
k ¼ max α�wþ1;af g

�
rkÞP αð Þ is the jump down crossing rate into interval ½w;RþQ � iQ �
from page-i , and λ2

Pi�1
j ¼ 0

PRþQ�jQ
α ¼ RþQ þ1� jþ1ð ÞQ

Pb
k ¼ max α�wþ1;af g rkP

αð Þ is the jump down crossing rate in the interval ½RþQ � ðiþ1ÞQ
þ1;RþQ � iQ � from page j¼ 0;1;⋯; i� 1. The first term of the
right hand side, iσ
Pw�1

α ¼ RþQ� iþ1ð ÞQ þ1;
P αð Þ is the up crossing rate due

to regular order replenishment in page-i. The second term, iþ1ð Þ
σ
PRþQ� iþ1ð ÞQ

α ¼ max w�Q ;Re þ1ð Þ P αð Þ on the right hand side of Eq. (2) expresses
up crossing rate due to regular order replenishment from page-
iþ1ð Þ.

3.2.3. Page-n
In page-n, the sample path enters into the range of wA ½Reþ1;

RþQ � nQ �. Similar to page-i (i¼ 1;2;⋯n� 1Þ, page-n has unit
down crossings and jump down crossings due to regular and surge
demands. Unlike page-0 through page- n� 1ð Þ, depending on the
inventory level, up crossings in page-n may also be caused by
emergency order replenishment. For the inventory level wA
Reþ1;ReþQe½ � up crossings are caused by both regular order
replenishment and emergency order replenishment. For wA ½Reþ
Qeþ1;RþQ � nQ � up crossings are only caused by regular orders.
Thus, balance equations for page-n in the interval wA
Reþ1;ReþQe½ � and wA ½ReþQeþ1;RþQ � nQ � can be formulated
by (3a) and (3b).

λ1P wð Þþλ2
XRþQ�nQ

α ¼ w

Xb
k ¼ max α�wþ1;af g

rk

0
@

1
AP αð Þ

þλ2
Xn�1

j ¼ 0

XRþQ�jQ

α ¼ RþQ þ1� jþ1ð ÞQ

Xb
k ¼ max α�wþ1;af g

rk

0
@

1
AP αð Þ

¼ nσ
Xw�1

α ¼ Re þ1

P αð Þþλ2
XRþQ

α ¼ Re þ1

Xint b�αþ Re
Qe

� �
þ1

m ¼ 1X
k ¼ maxfa;ðm�1ÞQe þα�ReÞ

k ¼ minðb;mQe þα�wÞ
rk P αð Þþλ1P1 Reþ1ð Þ

8wA Reþ1 ReþQe½ � ð3aÞ

λ1P wð Þþλ2
XRþQ�nQ

α ¼ w

Xb
k ¼ max α�wþ1;af g

rk
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@

1
AP αð Þ

þλ2
Xn�1

j ¼ 0

XRþQ�jQ

α ¼ RþQ þ1� jþ1ð ÞQ

Xb
k ¼ max α�wþ1;af g

rk

0
@

1
AP αð Þ

¼ nσ
Xw�1

α ¼ Re þ1

P αð Þ 8wA ReþQeþ1;RþQ � nQ½ � ð3bÞ

On the left hand side of Eqs. (3a) and (3b), λ1P wð Þ denotes the

down crossing rate due to regular demand on page n, λ2
PRþQ�nQ

α ¼ wPb
k ¼ max α�wþ1;af g

rk

 !
P αð Þ is the jump down crossing rate into interval

wA ½w;RþQ � nQ � from page n, and λ2
Pn�1

j ¼ 0

PRþQ�jQ

α ¼ RþQ þ1� jþ1ð ÞQPb
k ¼ max α�wþ1;af g

rk

 !
PðαÞ is the jump down crossing in wA ½RþQ �

ðiþ1ÞQþ1;RþQ � iQ � from page j ¼ 0, 1, 2, n-1. If we look at the

right hand side of (3a) and (3b), the term σ
Pw�1

α ¼ Re þ1
P αð Þis the up

crossing rate due to regular order replenishment. The term λ2
PRþQ

α ¼ Re þ1

Pint b�αþ Re
Qe

� �
þ1

n ¼ 1

Pmin b;nQe þα�wð Þ

k ¼ max a; n�1ð ÞQe þα�Reð Þ
rk

0
@

1
AP αð Þ in (3a) expresses up

crossing rate due to emergency order replenishment. Atw¼ (Reþ1), if
there is a unit regular demand, it will trigger an emergency order. The
term λ1P Reþ1ð Þ on the right hand side of Eq. (3a) expresses the up
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crossing rate due to emergency orders triggered by regular demand
arrival at w¼ (Reþ1). Since this emergency order replenishment will
raise the inventory level to ReþQe from Re , the up crossing rate λ1
P1 Reþ1ð Þ is only applicable for wA Reþ1;ReþQe½ �:

By adding normalization Eq. (4) we can solve the linear systems
of Eqs. (1)–(4).

XRþQ

w ¼ Re þ1

P wð Þ ¼ 1 ð4Þ

3.3. Formulation of the total cost function

The stationary distribution of the inventory level can be easily
found by solving Eqs. (1)–(4), which are a set of linear equations.
The steady state inventory level can be used to calculate long-run
average costs. Let TC R;Q ;Re;Qeð Þ denote the long-run average of
the total cost per time unit, which consists of regular order cost,
emergency order cost, inventory holding cost, and shortage cost
per unit time under a given policy R;Q ;Re;Qeð Þ. Due to PASTA
(Wolff, 1982) and the memory-less property of the exponential
distribution, we can write long-run average total cost per time unit
in (5).

TC R;Q ;Reð Þ ¼ hE ILð Þþλ1K1PROþλ2K1PROþλ1K2PEOþλ2K2PEOþλ2SE Sð Þ
ð5Þ

Here, h is the unit inventory holding cost per time unit, E ILð Þ is
the expected on-hand inventory level, K1 is the unit regular order
cost,PRO is the probability of regular order, K2 is the fixed emer-
gency cost, PEO is the probability of emergency order, S is the
shortage cost per unit and EðSÞ is the expected shortage. Eqs. (6)–
(11) provide details for calculating each cost term in (5)

hE ILð Þ ¼ h
XRþQ

w ¼ Re þ1
wP wð Þ ð6Þ

λ1K1PRO ¼ K1 λ1
Xn�1

i ¼ 0

P R� iQþ1ð Þ
( )

ð7Þ

λ2K1PRO ¼ λ2K1

Xn
j ¼ 0

XRþ 1�jð ÞQ

w ¼ R�jQ þ1

Xb
k ¼ maxða;w� R�jQð ÞÞ

rkP wð Þ ð8Þ

λ1K2PEO ¼ λ1K2P Reþ1ð Þ ð9Þ

λ2K2PEO ¼ λ2K2

XRþQ

w ¼ Re þ1

Xb
k ¼ max w�Re ;af g

rk

0
@

1
AP wð Þ ð10Þ

λ2SE Sð Þ ¼ λ2S
XRþQ

w ¼ Re þ1

Xb
k ¼ wþ1

k�wð Þrk
 !

P wð Þ ð11Þ

Based on the above total cost function (Eqs. (5)–(11)), we
developed a search based heuristics in the next section to find
near optimal values of R;Q ;Re if Qe is given.
4. Optimization using a search-based heuristics

We assume that Qe, is given. In practice, Qe is often the minimum
measurement unit and is fixed. For a given policy (R;Q ;Re), we can
easily calculate the total cost using Eqs. (1)–(11). The balancing equa-
tions developed by Roni et al. (2015) were based on two pages. There
were two pages in themodel presented in Roni et al. (2015) because the
maximum number of outstanding regular orders was one. However, in
this paper we allow split delivery. Incorporating the concept of delivery
splitting, we allow for each replenishment order of size i*Q (i¼0,1,2,
……, n-1) to be delivered in i batches of size Q. When we split the
delivery, the maximum number of outstanding regular orders would be
i¼0,1,2, ……,n-1. For each page, we develop balancing equations as
shown in Eq. (2). This increases the number of balancing equations set
in this paper. The total cost function in the model with balancing
equations (Eqs. (1)–(4)) are not linear programming with embedded
nonlinear functions of int(), max(), and min(). The linearization requires
a number of additional variables and constraints with respect to Roni
et al. (2015). The additional variables are mostly binary. Solving such a
model using a commercial solver such as CPLEX would increase the
computational time substantially. Therefore, in order to find a near-
optimal inventory policy for this model we propose a heuristics based
on Tabu search. Tabu search explores the region of feasible solutions
using a descent strategy guided by several control rules. A detailed
description of the basic Tabu search heuristic can be found in Glover
(1989, 1995). The main components of the Tabu search algorithm are
the neighborhood definition, the search memories or rules (size of Tabu
list, and aspiration criteria), the diversification procedure, and the
stopping criterion. The neighborhood defines the set of potential
movements to choose from in each iteration.

4.1. Neighborhood definition

The n-step neighborhood of a feasible solution is defined as the set
of other feasible solutions which can be reached in n steps. Let x1; x2;
……xm denote a set of feasible policies for a model of m decision
variables and let n be an integer number. The following is a formal
formulation of the n-step neighborhood provided for a feasible solution
of size m: N x1; x2;……xmð Þ ¼ x1;……xmÞjxiASi;

�
i¼ 1;2;3;…::;mg

where Si ¼ xi7kjk¼ 1;2;…:n
� �

. For our problem, we first determine
the set of one-step neighborhood of a feasible inventory policy. The
one-step neighborhood for a policy R0;Q0and Re

0 is given by

N R;Q ;Reð Þ ¼ Rþ1;Qþ1;Reþ1ð Þ; Rþ1;Qþ1;Reð Þ;�
� Rþ1;Qþ1;Re � 1ð Þ; R;Q ;Re � 1ð Þ; Rþ1;Q ;Reþ1ð Þ;
� Rþ1;Q ;Reð Þ; Rþ1;Q ;Re � 1ð Þ; Rþ1;Q � 1;Reþ1ð Þ;
� Rþ1;Q � 1;Reð Þ; Rþ1;Q � 1;Re � 1ð Þ;
� Rþ1;Q � 1;Reþ1ð Þ; Rþ1;Q � 1;Reð Þ;
� Rþ1;Q � 1;Re � 1ð Þ; R;Qþ1;Reþ1ð Þ;
� R;Qþ1;Reð Þ; R;Qþ1;Re � 1ð Þ;
� R� 1;Qþ1;Reþ1ð Þ; R� 1;Qþ1;Reð Þ;
� R� 1;Qþ1;Re � 1ð Þ; R� 1;Q � 1;Re � 1ð Þ;
� R� 1;Q � 1;Reþ1ð Þ; R� 1;Q � 1;Reð Þ;
� R;Q � 1;Re � 1ð Þ; R� 1;Q ;Re � 1ð Þ;
� R;Q ;Reþ1ð Þ R;Q � 1;Reð Þ�

We eliminate infeasible inventory policies from the neighborhood
by inspecting the value of R;Q ;Re. We know that 4Re . Therefore, we
pick a neighborhood N R;Q ;Reð Þ in a such way that R4Re.

4.2. Tabu search procedure

Tabu search is guided by a Tabu list, which is used to avoid visiting
some inventory policies that have already been examined. The list
keeps a record of the most recent policies visited, as well as, the best
policies found. The policies of the Tabu list are sorted based on their
total cost in order to facilitate add, delete and update operations. The
Tabu list has a maximum size. When the limit is reached, a new
solution is added to the list and one solution is removed.

The algorithm starts by building an initial solution P0. The one-
step neighbors of this solution PcAN P0ð Þ are identified and eval-
uated. If a neighbor is not in the Tabu list, then it is added to this list.
If the list is already full, then the policy with the largest total cost
(located in the bottom of the list) is removed. If the neighboring
solutions are not better than P0, then Tabu search explores other
options to improve the quality of solutions explored. This is achieved
by using a diversification procedure. This procedure selects the worst



Fig. 2. The Tabu-search procedure.

Fig. 3. The procedure for finding an initial feasible policy.
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policy Pw from the Tabu list. The one-step neighborhood of Pw is then
explored. The algorithm stops after a maximum number of iterations
without improvements in the total cost. A step-by-step description of
the heuristic is presented in Fig. 2.

The initial solution which starts the algorithm is not selected at
random. Instead, a binary search procedure is developed in order to
obtain this solution. The procedure is designed in such a way that it
identifies a good quality initial feasible solution when Re ¼ 0 . Let Qu

and Ql denote the upper bound and lower bound of optimal order

quantity. The proposed procedure divides the range Ql;Qu
h i

into

equal parts (for example, Q
l þQu

2 ) and identifies the segment where the
local optimal order quantity Q lies. The value of TC R;Q ;Reð Þ is used to
identify the segment which contains the local optimal order quantity
Q . Let MðRÞ denote the minimum value of TC R;Q ;Reð Þ for given Q ,Re

where ReoRonQ . Let Δ denote the amount by which we modify the
value of Q , and M R;Δð Þ ¼ TC R;Q � Δ;Reð Þ. If (MðR;ΔÞ4MðRÞ) then

Q¼ Ql. This procedure is repeated until the width of range Ql;Qu
h i

decreases to 1. Fig. 3 presents details of the procedure that is used to
find the initial feasible policy.
5. Numerical experiment and results

In order to demonstrate the applicability of the proposed heur-
istics, we conducted a numerical study. There are no benchmark data
sets in the literature for this particular problem that we could directly
use to test and compare the robustness of the algorithm. To demon-
strate the efficiency of the algorithm in terms of solution time and
quality, we solve our model using randomly generated data sets. The
distributions are used to demonstrate regular and surge demand
pattern. In order to evaluate the performance of the proposed heur-
istic, we compare the solutions generated from the heuristic with the
corresponding optimal solutions found from explicit enumeration.
5.1. Experimental design

The Tabu search procedure is implemented with Cþþ Visual
Studio 2010 on a Duo 2 Core 2.67 GHz PC with 4 GB of RAM. 10 dif-
ferent scenarios are generated and used to test the performance of the
heuristic. Each scenario consists of a set of model input parameters.
The parameters used for each scenario are listed in Table 1. The
probability distribution of rk is defined by (12). The probability dis-
tribution of rk is such that rk decreases as the value of k increases.

rk ¼
2 b� kð Þ

b� að Þ b� aþ1ð Þ where kA a; b
� � ð12Þ

The probability distribution function in Eq. (12) captures the size
and nature of surge demand. In reality, small incidents, such as car
accidents are more likely to bring low demand volumes than big
incidents such as nuclear disasters. As indicated from Eq. (12), the
value of rk decreases with the increase in k. However, any other dis-
crete probability distribution could be used to model the surge
demand rk when the method discussed in Section 3 is applied. The
numerical experiments find near optimal values for R;Q ;Re.

We examine all possible one-step neighbors of a policy.
Numerical experiments are designed to analyze the performance
of the heuristics for different values of problem parameters. The
numerical experiments are designed in order to identify the
impact of the maximum number of iterations, the size of Tabu
list, and the neighborhood structure on the quality of
solutions found.



Table 1
Problem parameters.

Scenario λ1 λ2 σ h K1 K2 a b Qe s

1 1 0.02 1.5 0.8 25 140 2 30 3 100
2 3 0.02 1.5 0.8 25 140 2 40 3 200
3 1 0.02 1.5 1 25 140 2 40 3 200
4 2 0.02 1.5 1 25 140 2 40 3 200
5 2 0.02 1.5 1 25 140 2 50 3 200
6 5 0.1 4 1 25 140 2 50 3 250
7 7.5 0.4 7 1 40 160 2 50 3 500
8 10 0.8 9 1.2 40 160 2 80 3 1000
9 12 1 10 1.2 40 160 2 100 3 1200

10 15 1 12 1.2 40 160 2 100 3 1500

Table 2
Summary of the results from the Tabu search heuristics.

Scenario R� Q � Re
� Near Opt. cost found from

Tabu search heuristics ($)
Relative difference with optimal
solutions found from total enumeration (%)

1 12 15 0 20.77 0.09
2 16 20 0 29.14 0.96
3 16 14 1 30.48 1.03
4 14 15 0 32.25 1.40
5 21 16 2 38.52 1.68
6 33 24 0 60.40 4.9
7 46 44 0 86.03 5.8
8 94 45 17 178.56 6.1
9 122 59 45 229.32 6.4

10 126 107 87 273.39 7.2
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5.2. Performance of the Tabu search heuristics

Table 2 provides a summary of the results from the Tabu search
heuristics. The performance of the procedure is evaluated using two
criteria: solution quality and CPU running time. In order to evaluate
the quality of the solutions, we compare them to the optimal cost
found using the total enumeration technique. The procedure for total
enumeration is shown in Appendix A. The relative difference (Δ%Þ
between the two solutions is measured using this formula

Δ%¼ NearoptimalSol:usingtabusearch�OptimalSol:bytotalenumeration
OptimalSol:bytotalenumerationl � 100%.

Our computational results indicate that the Tabu search procedure
provides high quality solutions. Our numerical analysis shows that
depending on the scenario, the relative difference between the total
enumeration and the Tabu search heuristics could be 0.09–7.2% as
shown in Table 2. The running time of Tabu search heuristics is smaller
compared to total enumeration method. As indicated in Fig. 4, the
running time of explicit enumeration is higher than the Tabu search
algorithm, especially when the problem size increases. This implies
that simple total enumeration is reasonable for small instance but a
search heuristics is necessary for large scale instances.

5.3. Heuristics-related parameter selection

The maximum number of iterations without an improvement is
used as a stopping criterion of the Tabu search heuristics. We ran the
experiments using different values for the maximum number of
iterations. Fig. 5 presents the relationship between the total system
cost and the maximum number of iterations for each scenario. The
figure shows that the maximum number of iterations has some effect
on the performance of the proposed heuristics. However, increasing
the maximum number of iterations has a great impact on the running
time of the algorithm.We also recorded the iteration number at which
the best solution was obtained. Fig. 6 presents the iteration number
where the best solution was obtained under different maximum
number of iterations and scenarios. The results indicate that most of
the final solutions are obtained within 30 iterations.

It is well-known that the size of the Tabu list affects the perfor-
mance of the heuristics (Glover, 1995). If the size of Tabu list is small,
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then, the search may be confined to a local optimum. Small Tabu lists
prevent the search process from jumping around when exploring the
solution space. In contrast, if the size of the Tabu list is too big, then
additional computational time is required to add, delete and update the
list. Thus, the search procedure spends a good portion of the compu-
tational time updating the Tabu list instead of exploring the solution
space. In order to evaluate the impact of the size of Tabu list we ran the
experiments and identified the best policy for a fixed list size. We used
five different sizes which are: 10, 20, 30, 40 and 50 respectively. Fig. 7
summarizes the results of the experiments. One can see that, as the size
of the Tabu list grows, the policy costs decrease. However, the decrease
in costs is very small when the size of the Tabu list is larger than 30.

5.4. Performance of the hybrid inventory policy with split delivery

Roni et al. (2015) proposed a hybrid policy for a stochastic
inventory system facing regular and surge demand with standard
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Fig. 7. Size of Tabu list versus total cost.

Table 3
Comparing the performance of the hybrid inventory policy with split delivery with the

Scenario λ1 λ2 σ K1 K2 a b Qe s h Near optimal
standard deli

8 10 0.8 9 40 160 2 80 3 1000 1 155.50
1500 0.4 130.11
2000 0.4 153.96
2500 0.4 175.13
3000 0.2 145.79

9 12 1 10 40 160 2 100 3 1000 1 199.39
1500 0.8 223.03
2000 0.2 151.49
2500 0.2 170.42
3000 0.2 187.78

10 15 1 12 40 160 2 100 3 1500 0.8 255.98
2000 0.6 258.42
2500 0.4 243.82
2500 0.2 188.96
3000 0.2 206.28
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Fig. 6. Maximum number of iterations versus the number of iterations to find the
best solution.
delivery. They investigated the benefit of using the hybrid inven-
tory model over the basic inventory policy without emergency
orders. They showed that the emergency reorder point Re is sen-
sitive to unit shortage cost s and increases as unit shortage cost s
goes up. We can see the similar result in our hybrid inventory
policy with split delivery. The emergency reorder point Re is high
in the scenarios where unit shortage cost s is high as shown in
scenarios 8, 9, 10 (Table 2). However, the behavior of the proposed
hybrid inventory policy with split delivery is different than a
hybrid inventory policy with standard delivery proposed by Roni
et al. (2015). Our numerical analysis indicates that considerable
cost savings are obtained from split delivery depending on various
instances. Table 3 shows that the hybrid inventory model with
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Fig. 9. Percentage of cost saving of the hybrid policy with split delivery, compared
to the standard delivery, as a function of holding and shortage costs for scenario 9.

standard delivery policy.

cost with
very ($/time unit)

Near optimal cost with
split delivery ($/time unit)

Percentage of cost savings (%)

149.99 3.5
103.48 20.5
131.08 14.9
157.29 10.2
109.48 24.9
194.92 2.2
220.91 0.9
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Fig. 8. Percentage of cost saving of the hybrid policy with split delivery, compared
to the standard delivery, as a function of holding and shortage costs for scenario 8.
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Fig. 10. Percentage of cost saving of the hybrid policy with split delivery, compared
to the standard delivery, as a function of holding and shortage costs for scenario 9.
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split delivery could save up to 31.4% of costs across instances
compared to standard delivery. Note that that the scenario analysis
is only a heuristic method we use in order to estimate perfor-
mance of the hybrid inventory policy with split delivery.

Numerical results show (Figs. 8, 9 and 10) that hybrid inventory
policy with split delivery outperforms hybrid inventory policy with
standard delivery for relatively low shortage and holding costs. But
hybrid inventory policies with split delivery tends to be expensive
when both the shortage and holding cost are high. Figs. 8–10 show
the percentage of cost saving in hybrid policy with split delivery
with respect to standard delivery as a function of holding and
shortage cost for scenarios 8–10. For example, Fig. 8 shows that as
the shortage cost goes down from $3500 to $1000 per unit and
holding cost goes down from $1.2 to $0.2 per time unit, the hybrid
inventory model with split delivery could save up to 42.1% with
respect to standard delivery in scenario 8. We can see similar cost
saving in scenario 9 and 10 respectively as shown in Figs. 9 and 10.
6. Conclusion and future research

This paper proposes a hybrid inventory policy with split delivery
under regular and surge demand. Split delivery considers the scenario
where there is a single supplier who replenishes all orders but the
supplier could split the delivery of the orders using multiple ship-
ments. This paper identifies an inventory management policy that
minimizes costs while maintaining a high service level. The level
crossing theory is used to formulate this problem and calculate the
equilibrium equations for the stationary inventory level probability
density function (PDF) under a given inventory policy featured by the
ordering points and order quantities of both order types. A Tabu
search-based heuristics is developed in order to identify solutions for
this problem. Numerical experiments demonstrate that the Tabu
search finds high quality solutions in a shorter time than the explicit
enumeration. Numerical results generated from different instances
also show that proposed hybrid inventory policy with split delivery
could outperform hybrid inventory policies with standard delivery by
saving 3.5–42.1% of total cost.

The paper only considers a single-item single-location inventory
system. One future research direction could be to extend the model to
a multiple-location case. The presented model assumes that items are
not perishable, though many medicines have finite shelf life in prac-
tice. This hybrid inventory model could be extended to perishable
products with a fixed or variable shelf life. The optimization approach
relies on Tabu search based heuristics. Therefore, another potential
extension is developing exact solution algorithms which find optimal
inventory policies. In summary, this paper makes a contribution to the
inventory management literature regarding the response to two types
of demand patterns. In practice, the model and solution approach
presented in this paper can help healthcare providers or humanitarian
logistics providers in managing their inventories. The proposed hybrid
inventory policy with split delivery could further reduce inventory
cost in a system that faces regular and surge demands.
Appendix A
Procedure: Total enumeration

Initialize
Optimal cost ¼ 1
R*¼0
Q*¼0
Re*¼0

For R¼1 to Rmax Do
For Q¼1 to Qmax Do
For Re¼0 to Rmax Do

If(TC R;Q ;Reð ÞoOptimal cost Then
Optimal cost¼ TC R;Q ;Reð Þ
R*¼ R
Q*¼Q
Re*¼ Re

Next Re
Next Q

Next R
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