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a b s t r a c t

This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge
demand. The combination of two different demand patterns can be observed in many areas, such as
healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival
rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates
the level crossing method and mixed integer programming technique to optimize the hybrid inventory
policy with both regular orders and emergency orders. The level crossing method is applied to obtain the
equilibrium distributions of inventory levels under a given policy. The model is further transformed into
a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to
investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical
results clearly show the benefit of using the proposed hybrid inventory model. The model and solution
approach could help healthcare providers or humanitarian logistics providers in managing their
emergency supplies in responding to surge demands.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Natural disasters (e.g., earthquakes, disease outbreak, volcanic
eruptions, floods, tsunamis, storms, and hurricanes) and man-made
events (e.g., massive accidents and terrorist attacks) may create surge
demand for medicines or emergency items. Though the frequency of
surge demand is very low, the demand volume per event could be
high. Providing humanitarian relief supplies, such as water, food,
medicines and associated services, to victims could be a major
challenge due to the unpredicted nature of surge demand for these
items and services. For example, in 2011 Haiti experienced an
earthquake that was the biggest earthquake in the last two centuries
and affected the capital city of Port-au-Prince. This earthquake
frustrated the country because of the lack of a well-planned and
coordinated distribution of relief supplies for weeks [1]. For this
reason, we believe that disaster management teams are in need of
tools that can help with responding in a timely manner to disasters
by providing the necessary supplies and services [2]. A well-managed
disaster planning could save lives, reduce financial loss, protect
assets, facilitate recovery, and provide greater security and safety.

Since many medical items are critical to saving people's lives,
healthcare providers or humanitarian organizations need to keep
enough inventories for those incidents [3]. Managing the inven-
tory of healthcare or humanitarian service related products is
more challenging as compared to managing the inventory of
products for regular manufacturing. In traditional manufacturing,
if the demand forecasts are inaccurate or the order replenishment
does not follow the plan, the results are delayed orders or at worst
canceled orders. However, in healthcare delivery or humanitarian
service, a shortage could mean a difference between life and
death. Therefore, healthcare providers often have to maintain high
service levels for life-saving items. This is achieved either by
increasing the inventory level or through expedite shipments.
Both approaches are expensive. In order to minimize the inventory
holding costs, while maintaining high service levels, healthcare
providers and their suppliers need to develop sophisticated and
proactive inventory management policies for items that may face
surge demand. When surge demand occurs in one region, rapid
delivery of emergency items to the affected area is important. Such a
short-term immediate response could incur high costs. A proactive
inventory management system could minimize the occurrence of
these shortage costs. Motivated by the issues stated above, this paper
proposes a continuous-review hybrid inventory policy that relies on
using regular orders and emergency orders in response to regular
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and surge demands to support humanitarian operations. The paper
uses the level crossing theory (LCT) to obtain the long-run average
cost under a given policy. A mixed integer program is developed to
optimize the inventory policy parameters, including regular order
point, emergency order point, and regular order quantity.

This paper contributes to the literature in the following ways.
First, it provides a hybrid stochastic inventory model responding
to regular demand and surge demand. An analytical model based
on LCT is developed to derive the stationary distribution of the
inventory level for a continuous-review inventory system char-
acterized by 1) regular demand and surge demand, 2) variable lead
time, 3) two reorder points and two types of orders, and 4)
shortage cost. Second, this paper provides a new approach that
incorporates LCT and mixed integer programming techniques to
obtain the optimal inventory policy. Third, numerical experiments
demonstrate the benefit of using the hybrid inventory policy to
respond to regular demand and surge demand. Finally this paper
extends the application of LCT by considering discrete inventory
levels while most of papers in the literature considered the
inventory level as continuous states when applying LCT.

The remainder of this paper is organized as follows. A review of
the literature related to humanitarian logistics and inventory
management facing combined demand patterns is presented in
Section 2. The proposed hybrid inventory policy is modeled based
on the LCT presented in Section 3. Section 4 formulates a mixed
integer program based on the LCT model to optimize the proposed
inventory policy. Numerical experiments and sensitivity analyses
are conducted in Section 5. Section 6 concludes the paper and
provides future research directions.

2. Literature review

Studies on planning and optimizing emergency item inventory
management systems to support humanitarian operations have
been mostly focused on strategic or operational planning. Inven-
tory management is often considered together with location
decisions and stochastic mixed integer programs (SMIP) are often
used. Chang et al. [4] formulated two stochastic models for
locating warehouses for emergency response in the aftermath of
a flood. They developed a solution procedure to solve the flood
emergency logistics preparation problems. Facility locations with
inventory planning during disaster were studied by Balçik and
Beamon [2]. They proposed a stochastic inventory control model
that determines optimal order quantities and reorder points for a
long-term emergency relief response. Balçik and Beamon [2]
assumed that emergency orders are more expensive than regular
orders. Similarly, Yu et al. [5] investigated the benefits of dual
sourcing under the situation of increased demand during supply
disruption. Lodree and Taskin [6] formulated a model for the
question of ‘appropriate readiness’ regarding inventory planning
that accommodates demand and extremely uncertain events. They
worked within an insurance risk policy framework to find the
optimal inventory for efficient disaster relief in the aftermath of a
hurricane. Rottkemper et al. [7] presented a quantitative model
and a solution approach for planning and optimizing the supply of
a specific relief item to a given number of regions after the
occurrence of a disruption or a sudden increase of demand.
Ozguven and Ozbay [8] performed a case study-based approach
to demonstrate the usefulness of a stochastic humanitarian inven-
tory control model and estimation of the minimum safety stock
levels of emergency inventories. They present a two-stage SMIP
that provides an emergency response pre-positioning strategy for
hurricanes or other disaster threats. Rawls and Turnquist [9]
presented another two-stage SMIP that provides an emergency
response pre-positioning strategy for hurricanes or other disaster

threats considering uncertainty in demand for the stocked sup-
plies as well as uncertainty regarding transportation network
availability after an event. Campbell and Jones [10] examined the
decision of where to preposition supplies in preparation for a
disaster and how much to preposition at a location. Considering
the supply location risks, they derived equations for determining
the optimal stocking quantity and the total expected costs asso-
ciated with delivering to a demand point from a supply point.
A disaster may also cause supply disruption, pre-propositioning
emergency inventory at certain supply locations with extra protec-
tion used to mitigate the disruption on the supply side, which often
happen during large disasters [11]. Increasing the number of
suppliers could mitigate supply disruption risk [12,13].

Stochastic inventory control with two types of demand classes
has been studied over decades, resulting in a large body of the
literature for various settings. Wang et al. [14] studied the rationing
policy in an inventory systemwith two demand classes and different
service criteria for backorders with a continuous review (R, Q)
system. Kocaga and Alper [15] considered a single-echelon spare
parts distribution system with two demand classes and proposed a
static rationing policy that would ration stock to non-critical class.
Other models studied continuous-review stochastic inventory mod-
els with two demand types [16–21]. Inventory control models with
two types of demand classes under periodic reviews are studied by
[22–27]. The mixture of demand processes has been studied by [28–
30]. Azoury et al. [28] considered a continuous review inventory
system where demand is a combination of a constant deterministic
component and a random component that follows a compound
Poisson process. Presman and Sethi [29] showed the optimality of an
ðs; SÞ-policy for a continuous-review stochastic inventory model with
demand consisting of a compound Poisson process and a constant
demand rate. Sobel and Zhang [30] considered a periodic-review
inventory system with deterministic and stochastic demands assum-
ing that the deterministic demand has to be satisfied immediately
and the stochastic demand can be backordered.

Hybrid inventory policies with two reorder points and two order
quantities have been the subject for a number of studies in the
literature. Emergency orders may help to reduce backorder [31]. In
the context of continuous-review inventory systems Moinzadeh and
Nahmias [32] considered a policy with four decision variables, regular
reorder level, emergency reorder level, regular order quantity, and
emergency order quantity. Under the assumption of full backorder,
constant but different lead times for two order types, and at most
one outstanding order of each type, they derived an approximate
expression for the average cost per unit time and heuristically
provided the procedure of determining four decision variables.
Mohebbi and Posner [33] developed a model with non-unit-sized
demands that also has four policy parameters, regular order quantity,
emergency order quantity, regular reorder point, and emergency
reorder point. They presented an explicit expression for the average
cost rate function under the following assumptions: a compound
Poisson demand process, at most one outstanding order of each
order type, and exponentially distributed lead time. There are other
continuous-review inventory models involving emergency orders
closely related to our model [34–38].

Johansen and Thorstenson [34] considered the problem of
determining (R, Q) for a single item inventory system in which
emergency replenishments are also available in addition to regular
inventory replenishment. Axsater [35] derived a new decision rule
for emergency orders under compound Poisson demand. Given the
reorder point and lot size for regular orders, and based on real-time
information regarding the remaining delivery time, he developed a
heuristic decision rule to determine the timing and size of the
emergency orders. In another study Huang et al. [36] extended the
work of Axsater [35] by focusing on an online retailer facing
demand that depends on the committed service time and assuming
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partial backordering. Kalpakam and Sapna [37] considered two
reorder points, two order quantity inventory policies and assumed
that a Q-unit order would be placed at regular reorder point R if no
order is pending and another order will be placed when the
inventory level is zero. The emergency order quantity was assumed
to be R. Mamani and Moinzadeh [38] considered a continuous-
review inventory systemwhere delivery lead times can be managed
by expediting in-transit orders shipped from the supplier. Other
studies that focus on periodic-review stochastic inventory models
with the regular order mode and expedite order mode are [39–43].

Although the models presented in [34,36] considered emer-
gency orders, their lead time assumptions make them inappropriate
for surge demand response. Most of the literature considered two
supply modes that are known as regular supply mode and emer-
gency supply mode and assumed that the demand arrival process is
either a Poisson process or a compound Poisson process. We
consider demand arrival process as a combination of an indepen-
dent Poisson process and a compound Poisson process. Another
difference of our model from the literature is in terms of demand
arrivals during lead time. All existing models assumed that emer-
gency orders would occur only during lead time and the inventory
level could fall below the emergency reorder point only when there
is an outstanding regular order. In our model, as surge demand and
regular demand are independent, surge demand can occur at any
time and at any inventory position. A surge demand may occur at
the maximum inventory position and instantly bring the inventory
level to negative if its volume is large. In this case, the inventory
level crosses both the regular reorder point and the emergency
reorder point at the same moment so that both regular and
emergency orders are placed at the same moment. Another issue
addressed in our paper is the emergency order quantity. Different
from regular order quantity, emergency order quantity depends on
the inventory level and volume of surge demand. For example, the
size of demand for medicines due to a big earthquake must be
bigger than the demand caused by a multiple-car accident.

This paper will apply LCT [44] to obtain the equilibrium
distributions of inventory levels under a given inventory policy.
Several researchers [33,44–48] have applied LCT in stochastic
inventory systems to derive the stationary probability distribution
of inventory levels for continuous-review inventory policies. Brill
and Chauch [45] used LCT to derive expressions for the distribu-
tion and expected value of on-hand inventory, ordering rate, and
the expected total cost rate for a given ordering policy. Mohebbi
and Posner [33] applied LCT to derive the equilibrium distribution
of the inventory level (stock on hand) in a continuous-review
inventory system with compound Poisson demand, Erlang as well
as hyperexponentially distributed lead times, and lost sales.
Mohebbi [46] used LCT to compute the stationary distribution of
the on-hand inventory in a continuous-review system facing
supply interruptions. For stochastic piecewise linear production
and compound Poisson demands, Mohebbi [47] used LCT to derive
the stationary distribution of the inventory level in a limited
capacity production-storage system with lost sales. Chaouch [48]
used LCT to derive the long term inventory distribution function
and determine replenishment strategies. He considered the sce-
nario when buyers are faced with price-discounting campaigns
that randomly happen. Most of the existing research considered
the inventory level as continuous states when applying LCT but
our paper considers the inventory level as discrete states.

Applying LCT to obtain equilibrium distribution has advantages
over other methods such as the Markov decision process and
queuing theory. The state-action space in the underlying semi-
Markov decision process is large for the problem addressed in this
paper. The queuing theory requires extensive, tedious and time
consuming analysis to derive integral equations from the Lindley
recursion in order to obtain the probability density function in

complex stochastic models with state dependences [44]. LCT is a
faster and easier method to derive equations for the probability
density. The classical renewal theory is often used to model a
variety of continuous-review inventory problems that consider the
random demand process as a compound Poisson process with a
general distribution for demand sizes [49–52]. Under an assumed
order policy, such as ðs; SÞ or ðQ ; rÞ, those studies relied on the
assumption that back orders or lost sales are triggered only during
the replenishment lead time. Our paper allows back orders or
emergency orders to be triggered at any time points. Therefore,
the classical renewal theory is not an option to obtain the
equilibrium distribution. Our paper later transforms the LCT model
built in Section 3 into a mixed integer program to identify the
optimal hybrid policy.

3. Model formulation

Consider a single-location and single-item inventory system at
a hospital or humanitarian service provider. The inventory system
faces two types of demands, regular demand and surge demand.
The regular demand follows a Poisson process at the rate of λ1 and
each requests one unit. The surge demand arrives as a compound
Poisson process at the rate of λ2 and the requested amount of each
arrival follows a discrete distribution supported by ½a; b�. Let rk be
the probability that the requested amount is k, a number between
a and b. The assumption that surge demand follows a discrete
distribution makes this model more practical for disaster response.
Typically, the size of surge demand is highly random and its range
could be rather wide. It is also common that surge demand with
low demand quantity is more likely to occur as compared to surge
demand with high demand quantity. We addressed this issue by
developing a discrete distribution expression given by Eq. (44) in
Section 5. Because of the nature of the two demand types, we
assumed λ1 is much larger than λ2 and a41. The inventory policy
is defined by four parameters: regular reorder point (R), regular
order quantity ðQ Þ, emergency reorder point ðReÞ, and unit emer-
gency order quantity Qeð Þ. Once the on-hand inventory level
reaches or goes below the level of R, a regular order of size Q will
be placed and its replenishment lead time is exponentially
distributed with a mean of s�1. An emergency order is placed
when the inventory level reaches or goes below the level of Re. The
emergency order quantity is nQe, where ReoQeoR�Re and n is a
minimum positive integer value that makes the inventory level go
back to a level above Re. Therefore, n¼ ðk� iþReÞ=QeÞþ1

� �
, where

i is the on-hand inventory just before the surge demand of size k
units occurs. Please note that, if the inventory position i is above R
when surge demand arrives and the surges demand volume
kZ i�Re, we would place both a regular order and an emergency
order. The lead time for the emergency order is assumed to be zero
because of the criticality of the medical item.

3.1. LCT modeling framework

LCT is used to obtain the stationary distribution of inventory
levels and therefore the long-run average cost per time unit for a
given policy featured by a triplet of ðR; Q ; ReÞ. Following Brill [53],
we provide the following important definitions.

3.1.1. Definition 1 (state)
Assume that the state space S consists of discrete states fwg,

which represent the inventory levels for this paper. Let
T ¼ ftjtA ½0;1Þg and WðtÞ be the inventory level at time t. For
any wAS, PðWðtÞ ¼wÞ40 for some tZ0 and the steady state
probability lim

t-1
PðWðtÞ ¼wÞ40; when the limit exists.
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3.1.2. Definition 2 (sample path)
A sample path is a bounded real valued or vector valued

function WðtÞ; tAT and WðtÞAS. All sample path discontinuities
(i.e., the changes that are greater than one unit) are called jumps.
During any finite time intervals, the number of jumps and number
of relative extrema are finite with finite expectations.

3.1.3. Definition 3 (level)
A level-w in T � S is defined as a straight line T � fwg; wAS.

3.1.4. Definition 4 (down crossing)
Consider A0 ¼ ðw;1Þ \ S and Ae ¼ ð�1;wÞ \ S. WðdÞ down

crosses level w at instant t0 if WðdÞ crosses boundary
T � fwg at t0. Equivalently, WðdÞ exits T � A0 and enters T � Ae

at t0.

3.1.5. Definition 5 (up crossing)
WðdÞ up crosses level w at instant t0 if WðdÞ exits T � Ae and

enters T � A0 at t0.
LCT starts with constructing sample paths of the underlying

stochastic process over time. Although in many applications the
construction of sample paths is straightforward, the construction
may be nontrivial or challenging in some complex models with
high state dependences. For the hybrid inventory policy in this
paper, let fWðtÞ; t40g be the inventory level at time t. The
inventory level fWðtÞ; t40g at any instant is in the range of
½Reþ1;RþQ �. Let PðwÞ ¼ lim

t-1
PðWðtÞ ¼wÞ, where wA ½Reþ1;RþQ �.

A sample path in an inventory system may be considered a typical
tracing of the inventory level, WðtÞ, over time. Fig. 1 illustrates a
sample path for a hybrid inventory policy characterized by
R¼ 6; Q ¼ 9; Re ¼ 2; and Qe ¼ 3.

The sample path of WðtÞ in Fig. 1 goes down either by one unit
or sometimes by big jumps. The small jumps are caused by regular
demands while big jumps are caused by surge demands. The
sample path goes up when regular and emergency orders are
received. The state space of WðtÞ can be divided into two
subspaces based on whether there is an outstanding regular order.
Note that there is no outstanding order when wA ½Rþ1; RþQ �,
while there is one outstanding regular order when wA ½Reþ1; R�.
These two regions are called page-0 and page-1.

3.2. Development of balancing equations in page-0 and page-1

In page-0, there are two types of down crossings, unit down
crossings and jump down crossings. A unit down crossing is

caused by a regular unit demand and a jump down crossing
occurs when a surge demand arrives. In this page up crossings
happen only due to regular order replenishment. By using LCT, we
formulate the balance

λ1PðwÞþλ2 ∑
RþQ

α ¼ w
∑
b

k ¼ maxðα�wþ1;aÞ
rk

 !
PðαÞ

¼s ∑
R

α ¼ maxðw�Q ;Re þ1Þ
PðαÞ8wA ½Rþ1;RþQ � ð1Þ

where λ1PðwÞ is the down crossing rate at level w due to regular

demands and λ2∑RþQ
α ¼ Rþ1 ∑b

k ¼ α�wþ1rk
� �

PðαÞ is the down crossing

rate due to surge demands. On the right hand side
s∑R

α ¼ maxðR�Q ;Re þ1Þ PðαÞ is the up crossing rate due to regular
order replenishment at level w.

In page-1, the sample path enters into the level of wA ½Reþ1; R�.
The same as page-0, page-1 also has unit down crossings and jump
down crossings caused by regular unit demands and surge demand,
respectively. In page-1, up crossings occur due to both regular order
replenishment and emergency order replenishment. The balance
equation can be subdivided into two parts based on the value
of w. The balance equation for wA ½Reþ1 ;ReþQe� and wA ½ Reþ
Qeþ1;R� can be formulated as follows:

λ1PðwÞþλ2 ∑
RþQ

α ¼ w
∑
b

k ¼ maxðα�wþ1; aÞ
rk

 !
PðαÞ ¼s ∑

w�1

α ¼ Re þ1
PðαÞ

þλ2 ∑
RþQ

α ¼ Re þ1
∑

intððb�αþReÞ=QeÞþ1

n ¼ 1
∑

minðb; nQe þα�wÞ

k ¼ maxða;ðn�1ÞQe þα�ReÞ
rk

 !
PðαÞ

þλ1PðReþ1Þ 8w A ½Reþ1; ReþQe� ð2:aÞ

λ1PðwÞþλ2 ∑
RþQ

α ¼ w
∑
b

k ¼ max α�wþ1;af g
rk

 !
PðαÞ

¼s ∑
w�1

α ¼ Re þ1
PðαÞ 8w A ½ ReþQeþ1;R� ð2:bÞ

On the left hand side of both Eqs. (2.a) and (2.b), λ1PðwÞ denotes the
down crossing rate due to regular demand in page-1,

λ2∑RþQ
α ¼ w ∑b

k ¼ maxðα�wþ1;aÞrk
� �

PðαÞ is the jump down crossing rate into

interval wAðRe;RþQ �. On the right hand side of Eqs. (2.a) and (2.b),
the term s∑w�1

α ¼ Re þ1PðαÞ is the up crossing rate due to regular order

replenishment. The term λ2∑RþQ
α ¼ Re þ1 ∑intððb�αþRe=QeÞÞþ1

n ¼ 1

�
∑minðb;nQe þα�wÞ

k ¼ maxða;ðn�1ÞQe þα�ReÞrk
�
PðαÞ in Eq. (2.a) represents up crossing rate

due to emergency order replenishment. At w¼ ðReþ1Þ, if there is
a unit regular demand, it will trigger an emergency order. There-
fore, λ1P Reþ1ð Þ expresses up crossing rate due to an emergency
order triggered by regular demand arrival at (w¼ Reþ1). This
emergency order replenishment will result in up crossing to
inventory level w A ½Reþ1 ReþQe�. So λ1P1ðReþ1Þ is the up cross-
ing rate due to emergency order replenishment when
w A ½Reþ1 ReþQe�: By adding normalization Eq. (3), we can solve
linear Eqs. (1)–(3) to obtain the stationary probability of inventory
level w under a given hybrid policy

∑
RþQ

w ¼ Re þ1
PðwÞ ¼ 1 ð3Þ

3.3. Long-run average cost function under a given hybrid policy

PðwÞ under a given hybrid policy could be obtained by solving
the linear system defined by Eqs. (1)–(3). The inventory system in
this paper considers four cost terms: unit inventory holding cost
(h), regular order cost (K1Þ, emergency order cost ðK2Þ; and unit

R=6

R+Q=15

R=6

Re=2

W(t)

W(t)

t

t

0

0

Page 0

Page 1

Fig. 1. A sample path of inventory level.
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shortage cost (s). For convenience, let Pw ¼ PðwÞ for wA ½Reþ1;
RþQ �: The total long-run average cost per time unit, TC R;Q ;ð
Re;QeÞ, can be calculated based on

TCðR;Q ;Re;QeÞ ¼ h ∑
RþQ

w ¼ Re þ1
wPwþλ1K1PRþ1

þλ2K1 ∑
RþQ

w ¼ Rþ1
∑
b

k ¼ max w�R;að Þ
rk

 !
Pw

þλ1K2PRe þ1þλ2K2 ∑
RþQ

w ¼ Re þ1
∑
b

k ¼ max w�Re ;að Þ
rk

 !
Pw

þλ2S ∑
RþQ

w ¼ Re þ1
∑
b

k ¼ wþ1
k�wð Þrk

 !
Pw ð4Þ

where h∑RþQ
w ¼ Re þ1 wPw is the total holding costs, λ1 K1PRþ1 is

regular order costs due to regular demands, λ2K1∑RþQ
w ¼ Rþ1

∑b
k ¼ maxðw�R;aÞrk

� �
Pw is regular order costs due to surge demands,

λ1K2PRe þ1 is emergency order costs due to regular demands,

λ2K2∑RþQ
w ¼ Re þ1 ∑b

k ¼ maxðw�Re ;aÞrk
� �

Pw is emergency order costs

due to surge demands, and λ2S∑RþQ
w ¼ Re þ1 ∑b

k ¼ wþ1 k�wð Þrk
� �

Pw is

total shortage costs.

4. Mixed integer program for optimal policy

An optimization model with Eq. (4) as the objective function
and Eqs. (1)–(3) as constraints could be used to obtain the optimal
policy. However, the model with Eqs. (1)–(4) is not a linear
program with embedded nonlinear functions of intð Þ; maxð Þ;
and minð Þ. One possible method could be applying total enu-
meration to find an optimal policy. By solving Eqs. (1)–(3)) for any
given R, Q, Qe and Re we can obtain Pw and then calculate the total
long-run average cost per time unit by using Eq. (4). However,
total enumeration is not computationally efficient. A mixed integer
programming (MIP) model is developed in this section to obtain
an optimal policy ðRn; Qn; Rn

e Þ by linearizing balance Eqs. (1), (2.a)
and (2.b) and the objective function in Eq. (4). The MIP assumes
that RþQ�ReoU, where U is an upper bound of RþQ . The MIP
also assumes that Qe is given. In practice, Qe is often the minimum
measurement unit and is fixed. The linearization requires a
number of additional variables and constrains, which are defined
as follows.

ywα: probability of down crossings of level w from level α due
to surge demand arrival;

twα: probability of up crossings of level w from level α due to
regular order replenishment;

mwαk: for a given w A ½Reþ1; ReþQe� and αA ½Reþ1; RþQ � the
probability of surge demand k for which an up crossing
of level w from level α occurs due to emergency order
arrival;

nαk: number of emergency orders of size Qe required to keep
the inventory level above Re when a surge demand of
size k occurs at inventory level α;

P1
w¼ PRe þ1 if w¼ Reþ1;0 : otherwise;

P2¼ PRþ1;
v1wkðv2wk): probability for surge demand of size k to trigger a regular

order (emergency orders) at level w;
M: a big number;
Z1
w¼ 1 : if wrRþQ ;0 : otherwise;

Z2
w¼ 1 : if wZReþ1;0 : otherwise;

Z3
w¼ 1 : if wrR;0 : otherwise;

Z4
w¼ 1 : if wrReþQe;0 : otherwise;

Z5
w¼ 0 : if wrRþ1;1 : otherwise;

Z6
w¼ 0 : if wrReþ1;1 : otherwise;

Bwα¼ 1 : if αZw�Q ;0 : otherwise for wA ½1;U�; αA ½1;U�;
Nwk¼ 1 : if kZw�Re;0 : otherwise for wA ½1;U�; kA ½a; b�;
Lwk¼ 1 : if kZw�R;0 : otherwise for wA ½1; U�; kA ½a; b�; and
Jwαk¼ 1 : if α�kþnαkQeZw;0 : otherwise for wA ½1; U�;

αA ½1;U�; kA ½a; b�.

Introducing P1
w; P2, v1wk and v2wk, we can rewrite the objective

function in Eq. (4) into Eq. (5) as the objective function for the MIP

Min TC R;Q ;Re;Qeð Þ ¼ h ∑
U

w ¼ 1
wPwþλ1K1PRþ1

þλ2K1 ∑
U

w ¼ 1
∑
b

k ¼ a
v1wkþλ1K2 ∑

U

w ¼ 1
wP1

w

þλ2K2 ∑
U

w ¼ 1
∑
b

k ¼ a
v2wk

þλ2S ∑
U

w ¼ 1
∑
b

k ¼ wþ1
k�wð Þrk

 !
Pw: ð5Þ

By introducing variables Pw; ywα; tαw and P1
w we combine Eqs. (1),

(2.a) and (2.b) into

λ1Pwþλ2 ∑
U

α ¼ w
ywα ¼ s ∑

w�1

α ¼ 1
twαþλ2 ∑

U

α ¼ 1
∑
b

k ¼ a
mwαkþλ1P

1
w 8wA ½1; U�:

ð6Þ
The left hand side of constraint in Eq. (6) is the total down crossing
rate over the level of wA ½1; U�, including those caused by the
regular unit demand (λ1Pw) and the jump down crossing rate from
αA ½w;U�. The right hand side is the total possible up crossing rate
for all wA ½1; U�. Left hand side variables Pw and ywα in Eq. (6)
take positive values only when wA ½Reþ1; RþQ �, which will be
forced by additional constraints in Eqs. (7)–(9) with the new
binary variables of Z1

w and Z2
w, whose values are determined

by the inventory policy ðR;Q ;ReÞ. Constraint sets in Eqs. (7) and
(8) set Z1

w ¼ 1 if wrRþQ and Z1
w ¼ 0;otherwise and Z2

w ¼ 1 if
wZReþ1. Constraint set in Eq. (9) forces Pw to be 0 if wrRe or
w4Re. Constraint sets in Eqs. (10)–(12) make sure that
ywα ¼∑b

k ¼ maxðα�wþ1;aÞrkPα when α;wA ½Reþ1; RþQ �. Please note
that αZw here

RþQ�wþ1rMZ1
wrM�wþRþQ 8wA ½1; U�; ð7Þ

w�RerMZ2
wrM�Re�1þw 8wA ½1; U�; ð8Þ

PwrZ1
wþ Z2

w�1 8wA ½1; U�; ð9Þ

∑
b

k ¼ maxðα�wþ1;aÞ
rkPα�3þZ1

αþZ1
wþZ2

wrywαr ∑
b

k ¼ maxðα�wþ1;aÞ
rkPα

þ3�Z1
α�Z1

w�Z2
w 8wA ½1; U�; αA ½w;U�; ð10Þ

ywαrPα 8wA ½1; U�; αA ½w;U�; and ð11Þ

ywαrZ2
w 8wA ½1; U�; αA ½w;U�: ð12Þ

For the right hand side of Eq. (6), constraint sets in Eqs. (13)–(19)
are used to get tαw ¼ Pα only when αA ½Reþ1;R�;wA ½Reþ1;
RþQ � and αZw�Q . Here, Z3

w ¼ 1 if wrR; Z3
w ¼ 0; otherwise:

Bwα ¼ 1 if αZw�Q ;Bwα ¼ 0;otherwise

Pα�5þðZ1
wþZ2

wþZ2
αþZ3

αþBwαÞrtwαrPα

þ5�ðZ1
wþZ2

wþZ2
αþZ3

αþBwαÞ 8wA ½1; U�; αA ½1; w�1�; ð13Þ

twαr Z1
w 8wA ½1; U�; αA ½1; w�1�; ð14Þ

twαr Z2
α 8wA ½1; U�; αA ½1; w�1�; ð15Þ
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twαr Z3
α 8wA ½1; U�; αA ½1; w�1�; ð16Þ

twαrMBwα 8wA ½1; U�; αA ½1; w�1�; ð17Þ

R�wþ1 rMZ3
wrM�wþR 8wA ½1;U�; and ð18Þ

α�wþQþ1 rMBwαrMþα�wþQ 8wA ½1;U�; αA ½1; w�1�:
ð19Þ

Constraint sets in Eqs. (20)–(30) are used to set mwαk ¼ rkPα only
when wA ½Reþ1; ReþQe�; αA ½Reþ1 ; RþQ �; kZα�Re and α�kþ
nαkQeZw and enforcing mwαk to be zero otherwise. Here, mwαk is
the probability that a surge demand of size k causes an up crossing
of level w from level α due to emergency orders

rkPα�6þðNαkþZ2
αþZ2

wþZ4
wþZ1

αþ JwαkÞrmwαkrrkPαþ6

�ðNαkþZ2
αþZ2

wþZ4
wþZ1

αþ JwαkÞ 8wA ½1;U�; αA ½1;U�; kA ½a; b�;
ð20Þ

mwαkrPα 8wA ½1;U�; αA ½1;U�; kA ½a; b�; ð21Þ

mwαkrZ2
w 8wA ½1;U�; αA ½1;U�; kA ½a; b�; ð22Þ

mwαkrZ4
w 8wA ½1;U�; αA ½1;U�; kA ½a; b�; ð23Þ

mwαkr Jwαk 8wA ½1;U�; αA ½1;U�; kA ½a; b�; ð24Þ

mwαkrNαk 8wA ½1;U�; αA ½1;U�; kA ½a; b�; ð25Þ

α�kþnαkQe�wþ1rMJwαkrM
þα�kþnαkQe�w 8wA ½1;U�; αA ½1;U�; kA ½a;b�; ð26Þ

Reþ1�M 1�Nαkð Þrα�kþnαkQerRe

þQeþM 1�Nαkð Þ 8wA ½1;U�; αA ½1;U�; kA ½a; b�; ð27Þ

nαkrMNαk 8αA ½1;U�; kA ½a; b�; ð28Þ

Re�αþkþ1rMNαkrM�α

þkþRe 8αA ½1;U�; kA ½a; b�; and ð29Þ

ReþQe�wþ1rMZ4
wrM�wþReþQe 8wA ½1;U�; ð30Þ

Following the same logic, linear constraint sets in Eqs. (31)–(35)
are used to obtain P1

w and P2, whose values depend on R and Re.
P1
w and P2 are used in constrain set in Eq. (6) and objective

function in Eq. (5)

PwþZ2
w�Z6

w�1rP1
w rPwþ1�Z2

wþZ6
w 8wA ½1;U�; ð31Þ

P1
wrZ2

w�Z6
w 8wA ½1;U�; ð32Þ

w�Re�1rMZ6
wrMþw�Re�2 8wA ½1;U�; ð33Þ

Pw�ðZ3
wþZ5

wÞrP2rPwþðZ3
wþZ5

wÞ 8wA ½1;U�; and ð34Þ

w�R�1rMZ5
wrMþw�R�2 8wA ½1;U�: ð35Þ

The following constraints set in Eqs. (36)–(40) are used to obtain
v1wk, the probability that a surge demand of size k triggers a regular
order at level w. Similarly, v2wk is the probability that a surge
demand of size k triggers an emergency orders and is determined
by constraint sets in Eqs. (41) and (42)

rkPw�1þLwk�Z3
wrv1wkrrkPwþ1

�LwkþZ3
w 8wA ½1;U�; kA ½a; b�; ð36Þ

v1wkr1�Z3
w 8wA ½1;U�; kA ½a; b�; ð38Þ

v1wkrLwk 8wA ½1;U�; kA ½a; b�; ð39Þ

k�wþRþ1rMLwkrMþk�wþR 8wA ½1;U�; kA ½a; b�; ð40Þ

rkPw�1þNwkrv2wkrrkPwþ1�Nwk 8wA ½1;U�; kA ½a; b�; and

ð41Þ

v2wkrNwk 8wA ½1;U�; kA ½a; b�: ð42Þ
Replacing RþQ by U and Reþ1 by 1, the normalization Eq. (3) can
be rewritten as

∑
U

w ¼ 1
Pw ¼ 1: ð43Þ

The MIP with objective function in Eq. (5) and constraints in
Eqs. (6)–(43) can be solved easily using a commercial optimization
package, such as IBM ILOG CPLEX.

5. Numerical results and sensitivity analysis

Numerical experiments are conducted based on the MIP model in
Eqs. (5)–(43) developed in Section 4 to gain insights on the optimal
hybrid inventory policy responding to both regular and surge
demands. In the literature there are no benchmark data sets that we
could directly use to test this particular problem and evaluate the
applicability of the model and solution approach. Therefore, the data
sets used in the experiments are randomly generated with demand
distributions that could reflect real applications. The results also
demonstrate the effect of the hybrid inventory policy compared to
the inventory policy without emergency order.

5.1. Experimental design

The optimization model was solved by IBM CPLEX 12.5.1 using
the Concert Technology in Cþþ . All tests were conducted using a
desktop computer with Intel s Core i7 3.1 GHz CPU and 32 GB
memory. The optimality tolerances were all set to 1%. Various
scenarios with different input parameters were used to test the
MIP model.

The surge demand size is assumed to follow the discrete
distribution defined by Eq. (44) such that rk decreases in k with a
constant rate. In practice, small incidents such as car accidents are
more likely to occur than big accidents such as nuclear accidents.
However, any other discrete distributions could be used to model the
surge demand distribution rk without significantly increasing com-
putational burden and will be discussed in Section 5.3

rk ¼
2ðb�kþ1Þ

ðb�aþ2Þðb�aþ1Þ; where kA ½a ; b�: ð44Þ

5.2. Computational results

Table 1 presents the optimal policy ðR; Q ; ReÞ, minimum cost,
and computational time for various instances. We can see that the
computational time increases as the value of U (the maximum
possible inventory level) increases. The results show that com-
mercial solvers can solve the proposed MIP model within thou-
sands of seconds when U is 60 or smaller. Computational time
could be reduced by selecting an appropriate value of U. A high
value of U increases the number of binary variables and the
number of constraints in the MIP and therefore may cause a
computational challenge. In this case, further study on algorithms
and possibly approximations will be necessary to address the
computational burden. In general, the value of U depends on the
estimated value of RþQ for the optimal inventory policy.
In practice, it is possible to roughly pre-estimate the values
of Q based on the Economic Order Quantity (EOQ) to balance
the inventory holding cost and the fixed cost of regular orders.
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Its values is mainly influenced by K1, λ1, and h but could also be
influenced by surge demand arrival rate λ2 and the expected surge
demand size. Regular reorder point R mainly depends on the lead
time demand (i.e., λ1 and s�1 ) to balance inventory holding cost
and shortage cost. However, we suspect that a high unit shortage
cost (s) may not cause a big increase of regular reorder point
because of possible emergence orders. All above discussions are
supported by the following numerical experiment results.

Additional instances were generated to investigate the benefit of
using the hybrid inventory model over the basic inventory policy
without emergency orders. A model for the basic inventory policy was

built by simply removing the up crossing rates of λ2∑RþQ
α ¼ Re þ1

∑intððb�αþReÞ=QeÞþ1
n ¼ 1 ∑minðb; nQe þα�wÞ

k ¼ maxða;ðn�1ÞQe þα�ReÞrk
� �

PðαÞ þλ1PðReþ1Þ
from the right side of Eq. (2.a) in the LCT balancing equations and by
modifying the corresponding MIP. After removing these up crossing
rates caused by emergency orders, Eqs. (2.a) and (2.b) are combined
into one equation and both Re and Qe disappear after we replace Re

with a lower bound of the inventory level in Eqs. (1)–(3). The
percentages of savings obtained by the hybrid inventory policy are
shown in Table 2. The percentage of savings due to the hybrid
inventory model varies from 3.82% to 14.41% across instances.

5.3. Sensitivity analysis

To investigate the impact that the values selected as problem
parameters have on costs and replenishment policy, we conducted

a sensitivity analysis with results presented in Figs. 2–7 with
discussions. The parameters used in the base case for the sensi-
tivity analysis are presented in Table 3.

Observation 1: Similar to the traditional ðQ ; rÞ inventory
model, Fig. 2 indicates that the optimal cost and regular reorder

Table 1
R, Q, Re, optimal cost and computing time for different instances.

λ1 λ2 s U h K1 K2 a b Qe s Rn Qn Ren Optimal cost Com. time (s)

1 0.01 1 40 0.8 40 200 2 30 3 150 6 16 0 18.27 601
1 25 140 2 50 3 80 4 12 0 21.57 609

1.5 0.02 1.5 40 0.8 40 200 2 30 3 150 9 20 0 22.92 626
1 25 140 2 50 3 80 7 19 0 29.99 620

2 0.025 2 50 0.8 40 200 2 30 3 150 10 22 0 25.03 1698
1 25 140 2 50 3 80 8 23 0 33.35 1701

2.5 0.03 2 50 0.8 40 200 2 30 3 150 11 23 0 26.72 1750
1 25 140 2 50 3 80 10 24 0 35.95 1769

3 0.035 3 60 0.8 40 200 2 30 3 150 12 24 0 28.47 4021
1 25 140 2 50 3 80 12 25 0 38.39 4140

3.5 0.04 3 60 0.8 40 200 2 30 3 150 12 26 0 30.08 4289
1 25 140 2 50 3 80 14 26 0 40.53 4317

4 0.045 3.5 60 0.8 40 200 2 30 3 150 13 27 0 31.39 4319
1 25 140 2 50 3 80 15 27 0 42.26 4410

4.5 0.05 4 60 0.8 40 200 2 30 3 150 13 28 0 32.62 4403
1 25 140 2 50 3 80 16 28 0 43.81 4420

5 0.055 4.5 60 0.8 40 200 2 30 3 150 14 29 0 33.77 4397
1 25 140 2 50 3 80 17 29 0 45.23 4430

5.5 0.06 5 60 0.8 40 200 2 30 3 150 14 30 0 34.85 4519
1 25 140 2 50 3 80 18 29 0 46.54 4850

Table 2
Percentage of cost savings due to the hybrid inventory policy.

λ1 λ2 s h K1 K2 a b Qe s Basic Inventory Policy Hybrid Inventory Policy Percent of cost savings

Rn Qn Optimal cost Rn Qn Ren Optimal cost

1 0.2 1 0.8 25 140 2 30 3 1000 44 15 49.83 39 14 18 45.03 9.62
1 0.2 1 0.8 25 140 2 40 3 1500 64 14 67.00 43 30 29 57.35 14.41
1.5 0.2 1.5 0.8 25 140 2 40 3 1000 53 17 59.31 41 30 25 55.63 6.19
2 0.2 2 0.8 25 140 2 40 3 1500 52 20 59.93 41 31 26 56.44 5.83
3 0.2 3 0.8 25 140 2 40 3 1000 53 24 62.29 49 24 22 58.93 5.39
3.5 0.3 3.5 0.8 25 140 2 40 3 1500 52 27 63.98 45 34 24 61.54 3.82
4 0.3 3 0.8 25 140 2 40 3 1500 54 28 66.33 47 34 24 63.15 4.80
4.5 0.3 3.5 0.8 25 140 2 40 3 2000 54 30 67.08 47 35 25 63.77 4.93
4.5 0.3 3.5 0.8 25 140 2 40 3 3000 57 30 69.70 48 35 28 64.90 6.89
5 0.4 4 0.8 25 140 2 50 3 4000 79 35 92.02 62 41 38 80.95 12.04

Fig. 2. Sensitivity analysis of s.
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point R quickly increase with the unit shortage cost s, especially
when s is small (e.g., so1500). However, R becomes relatively
stable later when s is large (e.g., s42500) because the shortage
cost is controlled mainly through a positive and increasing Re in
the case with high s rather than through increasing the maximum
inventory level. The regular order quantity Q in general keeps the
same with a slight decrease because the regular reorder points
goes up. The value of Q mainly depends on the fixed ordering cost
and unit inventory holding cost, similar to the traditional Eco-
nomic Order Quantity (EOQ). Because there are multiple decision
variables and the optimality gap (i.e., 1% gap), the monotonicity
does not strictly hold. For example, in Fig. 2, when s is about at
2000, the regular order quantity Q has a drop while the regular re-
ordering point has a bump. Similar phenomenon exists in other
figures. The emergency reorder point Re is sensitive to both unit
shortage cost s and surge demand arrival rate λ2 (see Figs. 2 and 3).
If the unit shortage cost is low, then Re ¼ 0, implying that the
emergency orders only happen when the inventory is used up.

Fig. 3 shows that the optimal cost and the values of R; Q ; and Re

all increase in λ2. All of them are intuitive. Higher λ2 implies higher
overall demand rate so that the regular order quantity goes up.
Higher λ2 also implies higher expected demand during the regular
order lead time so that the regular reorder point R goes up. When
λ2 is high enough, the emergency reorder point Re could become
non-zero, which means emergency orders are placed to prepare
for possible surge demand even when the inventory is not used
up. These results imply that a good practice for an inventory
management team for responding to surge demand is to categor-
ize inventories based on their unit shortage cost s (i.e., criticality)
and surge demand frequency λ2 and then to decide to set the
emergency reordering point at zero or a positive value.

Observation 2: Fig. 4 shows that the regular demand rate
influences the regular order quantity Q and the regular reorder
point R similar to a traditional ðQ ; rÞ inventory system, in which
higher demand rate causes bigger order quantity Q and higher
regular reorder point R. The decision about setting the value of Re

to positive depends on the ratio of λ2 =λ1: When this ratio is small,

Fig. 3. Sensitivity analysis of λ2.

Fig. 4. Sensitivity analysis of λ1.

Fig. 5. Sensitivity analysis of s.

Fig. 6. Impact of K1.
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Re ¼ 0, (see Figs. 3 and 4). As a result, items required to respond to
car accidents, a kind of disaster that occurs frequently (i.e., higher
λ2), tend to have higher regular reorder point, higher emergency
reorder point, and larger order quantity.

Observation 3: Fig. 5 shows the impact of expected lead time
s�1 of regular orders on the optimal cost and values of
R; Q ; and Re. Larger s means smaller expected value and var-
iance of the regular order lead time, which is assumed to follow an
exponential distribution. Obviously longer regular order lead time
s�1 increases the regular reorder point R but has little impact on
the regular order quantity Q and emergency reorder point Re.

Observation 4: The regular order quantity Q is sensitive to K1

(as shown in Fig. 6). As K1 increases, Q increases and R decreases.
This observation is similar to the regular inventory management
without emergency orders. K1 does not have any impact on Re,
which remains zero. Fig. 7 indicates that R rather than Re is more
sensitive to K2. Moreover, from Figs. 6 and 7 we can see that K1

and K2 do not have any impact on Re. When unit emergency order
cost K2 is higher, the overall inventory level becomes higher with

higher regular reorder R to avoid frequent emergency orders. We
expect that very small K2 may trigger a non-zero emergency
reorder point. However, K2 is typically much higher than K1 in
reality in order to have emergency orders immediately or almost
immediately for critical healthcare and humanitarian items.

Observation 5: Experimental results indicate that Re is zero in
most of the cases (Figs. 4–7). This may be due to the fact that our
emergency order lead time is zero. This assumption tends to avoid
maintaining additional safety stock. However, if the shortage cost s
and/or surge demand arrival rate λ2 are high, Re becomes positive
as shown in Figs. 2 and 3.

Observation 6: A sensitivity analysis of the distribution of
the surge demand size was also conducted. Table 4 presents
a comparison among distributions of a decreasing density function
as in Eq. (44), a uniform distribution, and a more general
triangular distribution with a different mode parameter c; where
the probability density reaches the maximum. Without a surprise,
both the optimal safety stock level and total cost increase when
the peak of the density function shifts to the upper bound of the
distribution range, b, because the shift means higher overall
demand rate. The computational time under different distribu-
tions could be different because of the different values of U, which
needs to be larger than RnþQn. However, we do not expect the
difference is huge as long as the range of the distribution ½a ; b�
keeps the same.

Observation 7: Figs. 2–7 show that Re ¼ 0 works well in most
of the settings, which is similar to the observation in the literature
that emergency orders are usually triggered by zero or negative
inventory levels [33–35]. Since this paper assumes zero lead time
for emergency orders, same as [35], and does not allow backorders
due to the importance of the item, negative Re is not allowed.
Numerical results in [34] show that in most cases Re is zero or
negative when backorders are allowed.

6. Conclusion and future research

This paper develops a stochastic inventory model based on a
hybrid inventory policy with both regular and emergency orders
responding to regular and surge demands. LCT is applied in order
to obtain the equilibrium distributions of inventory levels under a
given policy. Different from most papers in the literature that
applied LCT to the cases with exponentially distributed demand
size, this paper assumes that demand volume follows a discrete
distribution. To the best of our knowledge, this paper is the first
effort of applying LCT to the cases with a discrete state space. This
paper further transforms the model into a mixed integer program
to identify the optimal hybrid policy. The numerical experiments
show that commercial solvers can solve the proposed MIP model
within thousands of seconds when U (the maximum possible

Fig. 7. Impact of K2.

Table 3
Base line parameter values for numerical experiments.

λ1 λ2 s h K1 K2 a b Qe s

1.5 0.02 1.5 0.8 25 140 2 30 3 80

Table 4
Comparison of optimal R; Q ; Re and cost for different demand distributions of surge demand.

Base: rk ¼ 2ðb�kþ1Þ
ðb�aþ2Þðb�aþ1Þ8kA ½a; b� Uniform: rk ¼ 1

b�a 8kA ½a; b�
Triangular: rk ¼

2ðk�aÞ
ðb�aÞðc�aÞ 8arkrc

2ðb�kÞ
ðb�aÞðb� cÞ 8 crkrb

8<
:

Rn Qn Rn

e Optimal cost Rn Qn Rn

e Optimal cost c Rn Qn Rn

e Optimal cost

6 17 0 18.82 9 21 0 23.89

3 7 17 0 19.19
6 7 18 0 19.79
9 8 18 0 20.46

12 8 19 0 21.19
15 9 19 0 21.97
18 10 19 0 22.81
21 11 19 0 23.69
24 12 19 0 24.61
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inventory level) is moderate, such as 60 or smaller. It is expected
that a very large U could lead to a computational challenge and
require further study on algorithm development and possibly
some approximations. This model could help healthcare providers
or humanitarian logistics providers in managing their emergency
supplies in responding to surge demands for certain items. In
order to apply the solution approach in the real world, the surge
demand arrival rate and the distribution of its size per arrival need
to be estimated. The estimation could be a challenge because there
are often no enough historical data for surge demand compared to
regular demand.

Numerical results clearly show the benefit of using this hybrid
inventory model with 3.82–14.41% total cost savings. Furthermore,
a sensitivity analysis is conducted in the numerical experiments to
show how different parameter values affect the optimal inventory
policy and its cost. Most observations are intuitive and similar to
the traditional ðQ ; rÞ inventory model. However, it is interesting to
see that the emergency reorder point becomes positive when the
impact of a shortage is large, which is often the case for
humanitarian supply chain. A positive emergency reorder point
could be a good mechanism to reduce the overall inventory level
for critical items whose shortage may lead to a big loss. It is also
interesting to see that higher emergency order cost will drive the
regular order point higher if the item is critical and an emergency
order must be placed when there is a shortage.

This paper only considers a single-location, single-item inven-
tory system. The model could be extended to multiple locations.
However, multiple-locations will not only increase the size of the
MIP problem but also introduce the decision of demand assign-
ment among locations. Due to the large problem size, commercial
optimization solvers may not be able to solve the problems in a
reasonable amount of time. Therefore, decomposition or heuristic
algorithms may be necessary to obtain quality hybrid inventory
policies for multiple-location cases. During natural disasters and
man-made events, multiple items may be needed. When the items
have substitute or complementary relationship, their inventory
policies need to be considered in a systematic way. However, a
multi-item model with emergency orders is expected to be much
more complicated and may not be computationally tractable.
Furthermore, this paper assumes that items are not perishable
though many medicines have finite shelf life in practice. One
future effort could be to incorporate perishability into the model.
We expect that emergency orders may help to address the
perishability issue, which often causes a conflict between shortage
and expiry.
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