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a b s t r a c t

This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the
customer demand at a minimum cost by determining the time period for opening, closing, or retaining an
existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a
unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated
Benders decomposition algorithm. Extensive computational experiments are performed on benchmark
test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem.
Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently
offers high quality feasible solutions in a much shorter computational time period than the stand-
alone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of locating a set of facilities to serve customers has
received extensive attention from researchers, managers, and prac-
titioners due to the problem’s presence in almost any supply chain.
Therefore, various types of facility location problems have been
investigated in order to determine which facilities should be
opened, closed or relocated to serve select customers to minimize
the total cost (Melo et al., 2009). This paper examines a version of
the capacitated facility location problem (CFLP) in which facilities
are assumed to provide a finite amount of goods to meet time-
dependent and deterministic customer demand subject to time-
dependent cost parameters in a multi-period planning horizon.
This problem is referred to as the capacitated Dynamic Facility Loca-
tion Problem (DFLP) (Arabani and Farahani, 2012; Torres-Soto and
Uster, 2011). In order to be able to respond to varying demand,
the decision maker must determine whether to open new facilities,
keep the existing facilities open or closed, or relocate them at any
time period. In addition, the portion of customer demand needs to
be satisfied by each operating facility must be decided. The ulti-
mate objective is to minimize the total cost, which may include
transportation and operating costs, facilities opening and closing
expenses, or other costs during all planning periods.
Arabani and Farahani (2012) categorize the facility location
problem into two main groups based on whether the (re)location
decisions vary by time. The static facility location problem is
referred to as single-period facility location problem in which the
facility location decisions and their parameters are independent
of time. Since the dynamic counterpart relaxes this assumption,
dynamic model variants are more suitable to reflect the impacts
of vital factors that cannot be represented by static models, such
as incentives, energy prices, and market growth. Thus, dynamic
model variants have many application areas, including, but not
limited to, combat logistics (Gue, 2003), electronics logistics
(Manzini and Gebennini, 2008), and healthcare (Ghaderi and
Jabalameli, 2013). Current et al. (1998) further apply another clas-
sification criteria for the DFLP based on facility (re)location deci-
sions. The explicitly DFLP controls the opening and closing of a
facility in a planning horizon, whereas the parameters may change
over time, but the (re)location decisions can be made only at the
beginning of the time horizon in the implicitly DFLP. Mirchandani
and Odoni (1979) study a version of the implicitly DFLP in which
the travel times are treated as random variables with known dis-
crete probability distributions. Drezner and Wesolowsky (1991)
demonstrate an optimal solution method for the single facility
location problem with a single (re)location option with known
demand of each serving point and a continuous linear function of
time. Farahani et al. (2009) extend this work by including multiple
relocation opportunities and proposing an exact algorithm to make
optimal relocation decisions. The implicitly DFLP proposed by
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Drezner (1995) develops a progressive p-median problem that does
not consider (re)location of the existing facilities but time periods
are known when new facilities are added to the network. The com-
mon property of these studies is, although the demand is assumed
to be dynamic and deterministic as a function of time, facilities can
only be opened at the beginning of the planning period.

This study limits attention to the explicitly DFLP that represents
the impacts of time-dependent parameters on time-dependent (re)
location decisions. Even in this subgroup of facility location prob-
lems, differences exist due to several assumptions, or limitations,
on the ways facility capacities can be dynamically adjusted to cor-
respond to the dynamic structure of demand. Thus, some research-
ers assume that once a facility is located during a time period, it
will remain open until the end of the planning horizon (Scott,
1971). Some others consider the case that opening new facilities
or expanding current capacities and closing existing ones can occur
throughout the entire planning horizon (Canel et al., 2001; Lim and
Kim, 1999; Melo et al., 2006; Roy and Erlenkotter, 1982). Klose and
Drexl (2005) underline the exponentially increasing complexity of
the dynamic models over time. We also show that this problem is
NP-hard. Despite these facts, the DFLP has received extensive
attention due to recent computational advancements and in the
problems applicability to real -life applications. Researchers have
presented numerous intelligent solution ways for different ver-
sions of this problem. Jena et al. (2015) develop several valid
inequalities to strengthen the DFLPs formulations separately with
decisions about capacity expansion or reduction and facility clos-
ing and reopening. Scott (1971) proposes a near optimal dynamic
programming approach for the DFLP in which multiple facilities
can be located over equally distributed discrete time periods. Roy
and Erlenkotter (1982) propose an exact dual ascent method
embedded in a branch-and-bound search for the uncapacitated
DFLP that solves the problem instances within one second and con-
siders 25 facility and 50 customer locations, as well as 10 time
periods. Later on, Lim and Kim (1999) consider the capacitated
facilities for the same problem and develop a Lagrangian relaxation
based branch-and-bound approach supported by Gomory cuts.
Their technique finds good quality lower bounds by employing a
subgradient optimization method. Canel et al. (2001) further
extend this work by considering multi-commodity items. In the
first two stages of their algorithm, a branch-and-bound procedure
is adopted to make the facility opening and closing decisions for
each time period. At the final stage, the optimal configuration of
facilities is identified by dynamic programming. Melo et al.
(2006) introduce modular capacity concept that enables facilities
to exchange capacities. In addition, their capacitated multi-
commodity DFLP problem considers inventory activities and exter-
nal supply of goods. They investigate the complexity of each DFLP
attribute by reporting the solution quality of the mathematical
models solved by a commercial branch-and-bound solver. Jena
et al. (2014) study the multi-commodity DFLP with generalized
modular capacities in which facility closing, reopening, capacity
reductions, and expansions are taken into account. They present
a Langrangian based algorithm that finds good quality solutions
within reasonable CPU times. Their technique consistently obtains
solutions within 4% from the best known lower bound, even for the
problem instances the commercial solver fails to report any solu-
tion due to memory limitation.

The multi-period international facility location problem (IFLP),
introduced to the literature by Canel and Khumawala (1996), is a
variant of the DFLP and seeks either to minimize the total cost of
dynamically opening facilities in domestic/foreign countries or
maximize the after-tax profits. Opening new facilities is the only
facility related decision in the IFLP. However, the optimal time of
the location decisions, the total quantities that need to be pro-
duced in each location and the shipment amounts from facilities
to customers are taken into account. Canel and Khumawala
(1996) further develop few mixed integer programs (MIP) for both
the capacitated and uncapacitated IFLP, and by solving these prob-
lems in a commercial solver, they demonstrate how sensitive the
location decisions are for specific problem parameters, such as
with/without demand shortages. In a follow-up study, Canel and
Khumawala (1997) tackle the uncapacitated IFLP with a branch-
and-bound algorithm that is shown to be faster than the MIP for-
mulation by a factor of 50 on some problem instances. Finally, a
heuristic proposed by Canel and Khumawala (2001) demonstrates
significant computational time gains for a similar IFLP problem.

Torres-Soto and Uster (2011) study two versions of the DFLP. In
the first variant, they allow the facility opening and closing deci-
sions throughout each period, whereas the second variant assumes
located facilities are open during the entire planning period. After
presenting a MIP for each, they develop only the Benders decompo-
sition algorithm for the second problem and a Benders and a
Lagrangian relaxation based algorithm for the first problem. This
study presents the same problem as the first DFLP variant in
(Torres-Soto and Uster, 2011). No assumption is made on the
demand structures, and the facility opening/closing decisions can
be made during any time period. The major contribution of this
study is twofold. First, it proposes three main solution approaches:
(i) a rolling horizon (RH) heuristic, (ii) an accelerated Benders
decomposition algorithm, and (iii) a hybrid (RH- Benders) decom-
position algorithm. Second, in addition to the largest set of prob-
lem instances introduced by Torres-Soto and Uster (2011), we
introduce larger problem sets and compare both their methods
with our novel algorithms in terms of solution quality and time.

The rest of this paper is organized as follows: Section 2 intro-
duces the mathematical model formulation of the DFLP and dis-
cusses some basic properties. The proposed solution methods
including rolling horizon approximation, accelerated, and hybrid
Benders decomposition algorithms are presented in Section 3. A
comparative discussion of these algorithms over some benchmark
instances from the literature is demonstrated in Section 4. Finally,
Section 5 concludes this paper by providing possible future
research directions.
2. Problem formulation

This section introduces the mathematical formulation of the
½DFLP� that was proposed by Torres-Soto and Uster (2011). Let
G ¼ ðN ;AÞ be a complete directed graph where N denotes the set
of nodes and A denotes the set of arcs. Set N consists of set of cus-
tomers I and set of facilities J i.e., N ¼ I [ J and set A represents
the transportation arcs between the facilities to customers. In
½DFLP�, we allow the facilities to open, close or remain operational
in a given time period to meet the customer demand. The ultimate
goal is to determine the optimum locations of capacitated facilities
in each time period that will satisfy the customer demand at a
minimum possible total cost. We note that when fVjtgj2J ;t2T ¼
fUjtgj2J ;t2T ¼ 0 and fqjgj2J ! þ1, the ½DFLP� becomes the classical

uncapacitated fixed-charge location problem which is known to be
an NP-hard problem. Thus, ½DFLP� is also an NP-hard problem.

The major cost components in ½DFLP� are the cost related to
opening, closing and operating facilities and transportation costs
across all time periods. The sets, input parameters, and decision
variables used in this study are summarized in Table 1.

The ½DFLP� can be formulated as follows:

½DFLP� Minimize
X
j2J

X
t2T

wjtYjt þ gjtUjt þ ljtV jt þ
X
i2I

cijtXijt

 !



Table 1
Description of the sets and parameters.

Symbol Description

Sets
I Set of customer locations
J Set of facility locations
T Set of time periods

Parameters
wjt Fixed cost of having a facility open in location j of period t
gjt Fixed cost of opening a facility in location j at the beginning of

period t
ljt Fixed cost of closing a facility in location j at the beginning of period

t
dij Distance between customer i and facility j
a Per unit distance per unit demand cost
bit Demand of customer in location i during period t
cijt Total cost of shipping demand from location i to j in period

t; cijt ¼ abitdij
qj Capacity available for a facility at location j

Decision variables
Yjt 1 if a facility remain open in location j at the beginning of period t, 0

otherwise
Ujt 1 if a new facility is opened in location j at the beginning of period t,

0 otherwise
Vjt 1 if an existing facility is closed in location j at the beginning of

period t, 0 otherwise
Xijt Fraction of demand shipped from customer i to facility j in period t
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Subject to

Yjt þ Vjt ¼ Yj;t�1 þ Ujt 8j 2 J ; t 2 T ð1ÞX
j2J

Xijt ¼ 1 8i 2 I ; t 2 T ð2Þ

Xijt 6 Yjt 8i 2 I ; j 2 J ; t 2 T ð3ÞX
i2I

bitXijt 6 qjYjt 8j 2 J ; t 2 T ð4Þ

Yjt ;Ujt ;Vjt 2 f0;1g 8i 2 I ; j 2 J ; t 2 T ð5Þ
Xijt P 0 8i 2 I ; j 2 J ; t 2 T ð6Þ

The objective function minimizes the fixed cost for opening,
operating and closing a facility as well as transportation cost
between facilities to customers. Constraints (1) ensure the correct
assignment of opening and closing the facilities. This set of
constraints can be viewed as network flow constraints which guar-
antee that for a given value j 2 J , the polytope fðYjt;Vjt ;UjtÞ 2
½0;1�3jTj : Yj;t�1 þ Ujt ¼ Yjt þ Vjt;8t 2 T g will provide the integrality
property. Therefore, the resulting mechanism will generate a tight
linear programming formulation for model ½DFLP�. Constraints (2)
ensure that the demand must be met for each customer. On the
other hand, constraints (3) guarantee that the demand can only
be fulfilled from open facilities. Constraints (4) make sure that that
no facility can supply more than its capacity. Finally, constraints
(5) and (6) are the integrality and non-negativity constraints,
respectively.

3. Solution methods

Since the ½DFLP� is NP-hard, commercial solvers, such as CPLEX,
cannot solve large-scale instances of this problem. In this section
we propose the following approaches to solve ½DFLP�: a rolling hori-
zon heuristic, an accelerated Benders decomposition algorithm, and
a Benders-based rolling horizon algorithm. The aim is to produce a
near optimal solution for ½DFLP� in a reasonable amount of time.

3.1. Rolling Horizon (RH) algorithm

In this section, we introduce a heuristic approach proposed by
Balasubramanian and Grossmann (2004) and Kostina et al.
(2011). This approach decomposes problem ½DFLP� into a series
of small subproblems where each subproblem includes few con-
secutive time periods which are drawn from the overall planning
horizon. The algorithm terminates when all the subproblems are
investigated. The solution of this heuristic provides an upper
bound for problem ½DFLP�. The overall algorithm is shown in
Algorithm 1.

Algorithm 1. Rolling Horizon (RH) Heuristic

ts0 ¼ 0; s 1; Ms, terminate  false
while (terminate ¼ false) do
Set:
Yjt 2 f0;1g; Vjt 2 f0;1g and Ujt 2 f0;1g for ts0 6 t 6 ts0 þMs

0 6 Yjt 6 1; 0 6 Vjt 6 1 and 0 6 Ujt 6 1 for t > ts0 þMs

Solve the approximate sub-problem ½DFLPðsÞ� using CPLEX
if (t0 > jT j) then
stop  true

end if
s sþ 1
Fixing the values of Yjt ; Vjt and Ujt for t < ts0

end while

Let ts0 denote the starting time period of subproblem s. Let Ms

denote the number of time periods comprised in subproblem s.
We can set a fixed or variable size of Ms for each subproblem.
Each approximate subproblem of the rolling horizon algorithm
is denoted by ½DFLPðsÞ�. Now, each approximate subproblem
is solved by setting the variables as: (i) fYjtgj2J ;t2T 2 f0;1g;
fVjtgj2J ;t2T 2 f0;1g, and fUjtgj2J ;t2T 2 f0;1g for ts0 6 t 6 ts0 þMs

and (ii) 0 6 Yjt 6 1;0 6 Vjt 6 1, and 0 6 Ujt 6 1 for t > ts0 þMs.
Once a subproblem is solved, we fix the values of Yjt; Vjt , and Ujt

for t < ts0 and update the step size s. The process terminates when
all the subproblems are solved. Fig. 1 shows an example of using
the rolling horizon approach to solve a three time period problem.
3.2. Benders decomposition algorithm

Based on the structure of the model ½DFLP�, we develop an algo-
rithm using the Benders decomposition method (Benders, 1962),
which is a well-known partitioning method to solve mixed integer
linear programs. Benders decomposition helps separating the orig-
inal problem into two subproblems: an integer master problem
and a linear subproblem. In model ½DFLP�, for fixed values of binary
location variables, the resulting model can be decomposed into a
linear multi-time period transportation problem. The underlying
Benders reformulation for model ½DFLP� is given below:

Minimize
X
j2J

X
t2T

wjtYjt þ gjtUjt þ ljtV jt

� �
þ ½SP�ðXjŶ ; Û; V̂Þ

Subject to (1)–(6). ½SP�ðXjŶ ; Û; V̂Þ represents the Benders sub-
problem which is described below.

For given values of the Y :¼ fYjtgj2J ;t2T ; U :¼ fUjtgj2J ;t2T , and
V :¼ fVjtgj2J ;t2T variables satisfying the integrality constraints (5),
the model ½DFLP� reduces to the following primal subproblem
involving only the continuous variables X :¼ fXijtgi2I ;j2J ;t2T .

½SP� Minimize
X
i2I

X
j2J

X
t2T

cijtXijt

Subject toX
j2J

Xijt ¼ 1 8i 2 I ; t 2 T ð7Þ



Fig. 1. Application of a rolling horizon strategy for a three time period problem.
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Xijt 6 Ŷ jt 8i 2 I ; j 2 J ; t 2 T ð8ÞX
i2I

bitXijt 6 qjŶ jt 8j 2 J ; t 2 T ð9Þ

Xijt P 0 8i 2 I ; j 2 J ; t 2 T ð10Þ

Let k ¼ fkitji 2 I ; t 2 T g, d ¼ fdijt P 0ji 2 I ; j 2 J ; t 2 T g and Let
c ¼ fcjt P 0jj 2 J ; t 2 T g be the dual variables associated with con-
straints (7)–(9), respectively. The dual of the primal subproblem,
called the dual subproblem [DSP], can be written as:

½DSP� Maximize
X
i2I

X
t2T

kit �
X
i2I

X
j2J

X
t2T

Ŷ jtdijt �
X
j2J

X
t2T

qjŶ jtcjt

Subject to

kit � dijt � bitcjt 6 cijt 8i 2 I ; j 2 J ; t 2 T ð11Þ
dijt ; cjt P 0 8i 2 I ; j 2 J ; t 2 T ð12Þ
kit 2 R 8i 2 I ; t 2 T ð13Þ

Introducing an extra variable h, the underlying Benders refor-
mulation can be equivalently written as the following Benders
master problem ½MP�:

½MP� Minimize
X
j2J

X
t2T

wjtYjt þ gjtUjt þ ljtV jt

� �
þ h

Subject to

Yjt þ Vjt ¼ Yj;t�1 þ Ujt 8j 2 J ; t 2 T ð14Þ

h P
X
i2I

X
t2T

kit �
X
i2I

X
j2J

X
t2T

dijtY jt �
X
j2J

X
t2T

qjcjtYjt 8ðk; d; cÞ 2 PD

ð15ÞX
j2J

qjYjt P
X
i2I

bit 8t 2 T ð16Þ

Yjt ;Ujt ;Vjt 2 f0;1g 8i 2 I ; j 2 J ; t 2 T ð17Þ

h P 0 ð18Þ

In ½MP�, constraints (15) are referred to as optimality cut con-
straints where PD is the set of the extreme points in the feasible
region of ½DSP�. Constrains (16) are served as surrogate constrains
which are added to the master problem to ensure that enough
capacity plants are opened for ½DSP� to have a feasible solution.
The overall Benders decomposition algorithm is described as
follows:

Let UBn and LBn denote an upper and lower bound of the original
problem ½DFLP� at iteration n. In each iteration, the solution of the
master problem (znMP) provides a lower bound for the original prob-

lem. We now fix the values of the binary variables fŶn
jtgj2J ;t2T ,

fÛn
jtgj2J ;t2T , and fV̂n

jtgj2J ;t2T , obtained from the master problem
½MP�, and use these values to solve the dual subproblem ½DSP�.
The solution of the dual subproblem is denoted by znSUB. In iteration
n, solving the dual subproblem ½DSP� generates a new extreme point
p 2 PD which is added to the master problem ½MP� by updating set

PD as Pn
D ¼ Pn�1

D

S
p. Let znMAS ¼

P
j2J
P

t2T wjtYjt þ gjtUjt þ ljtV jt

� �
.

Therefore, the upper bound on the optimal solution value of the
½DFLP� can be determined as: UBn ¼ znMAS þ znSUB. As in Geoffrion
and Graves (1974), at the end of each iteration, we check if the
gap between the upper bound and lower bound falls belowa thresh-
old value �. If this happens, we terminate the algorithm; otherwise,
PD is updated by adding an optimality cut in the form (15) in ½MP�. A
pseudo-code of the basic Benders decomposition algorithm is pro-
vided in Algorithm 2.

Algorithm 2. Benders decomposition
UBn  þ1; LBn  �1; n 1; �; PD  0
terminate  false
while (terminate ¼ false) do
Solve ½MP� to obtain fYn

jtgj2J ;t2T , fU
n
jtgj2J ;t2T , fV

n
jtgj2J ;t2T ,

znMP ; znMAS

if (znMP > LBn) then
LBn  znMP

end if
Set:

Ŷn
jt ¼ Yn

jt ;8j 2 J ; t 2 T
Ûn

jt ¼ Un
jt ;8j 2 J ; t 2 T

V̂n
jt ¼ Vn

jt ;8j 2 J ; t 2 T
Solve ½DSP� to obtain ðkit ; dijt ; cjtÞ 2 PD and znSUB
if (znSUB þ znMAS < UBn) then
UBn  znSUB þ znMAS

end if
if ððUBn � LBnÞ=UBn 6 �Þ then
terminate  true

else
Pnþ1

D ¼ Pn
D [ fkit ; dijt ; cjtg

end if
n nþ 1

end while

The only difference between the Benders decomposition algo-
rithm proposed by Torres-Soto and Uster (2011) and ours is that
we have added integer cuts (see Section 3.3.4) and set branching
priorities (see Section 3.3.5) in addition to the enhancement strate-
gies proposed by Torres-Soto and Uster (2011).
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3.3. Accelerating Benders decomposition algorithm

This section presents some accelerating techniques to improve
the computational performance of the basic Benders decomposi-
tion algorithm in solving model ½DFLP�.

3.3.1. Multi-cuts
We observe that ½DSP� can be further decomposed into jT j inde-

pendent dual subproblems, one for each time period t 2 T . There-
fore, instead of adding one optimality cut we now add jT j number
of cuts in each iteration of the Benders master problem ½MP�. The
information obtained from solving jT j independent dual subprob-
lem is now used to generate cut (15). Let PD be the set of extreme
points of the dual polyhedron Pt

D associated with subproblem t.
We thus obtain the following revised master problem ½MMP�:

½MMP� Minimize
X
j2J

X
t2T

wjtYjt þ gjtUjt þ ljtV jt

� �
þ
X
t2T

ht

Subject to: (14), (16), (17), and

ht P
X
i2I

kit �
X
i2I

X
j2J

dijtYjt �
X
j2J

qjcjtYjt8t 2 T ; ðk; d; cÞ 2 Pt
D ð19Þ

Note that in formulation ½MMP� we add multiple terms ht
instead of single h presented in Eq. (15). Additionally, notice that
we now have the cuts defined for each time period t 2 T , with
the dual information used to generate the cuts being indexed
accordingly. This approach is expected to take fewer number of
iterations to reach the optimality gap; however, each iteration is
likely to take longer time to solve compared to ½MP� (Birge and
Louveaux, 1988).

3.3.2. Pareto-optimality cuts
One way to improve the convergence of the Benders decompo-

sition algorithm is to construct stronger, non-dominated cuts,
commonly named as pareto-optimality cuts (Magnanti and Wong,
1981). From the context of our problem, we can say that a
pareto-optimal cut is generated when the cut produced from an
extreme point ðk1; d1; c1Þ dominates the cut produced from another
extreme point ðk2; d2; c2Þ, i.e.,X
i2I

X
t2T

k1it �
X
i2I

X
j2J

X
t2T

Yjtd
1
ijt �

X
j2J

X
t2T

qjYjtc1jt

P
X
i2I

X
t2T

k2it �
X
i2I

X
j2J

X
t2T

Yjtd
2
ijt �

X
j2J

X
t2T

qjYjtc2jt

with strict inequality for at least one point fYjtgj2J ;t2T 2 Y. In this
study, we have used the following subproblem independent
pareto-optimal cuts proposed by Papadakos (2008). We refer to this
subproblem as ½DSPðMMWÞ�. Let YLP be the polyhedron defined by
(14), (16), and 0 6 fYjtg8j2J ;t2T 6 1. Let riðYLPÞ denote the relative

interior of YLP . A pareto-optimal cut can be obtained by solving the
following auxiliary subproblem where Y0

jt 2 riðYLPÞ; 8j 2 J ; t 2 T .

½DSPðMMWÞ� Maximize
X
i2I

X
t2T

kit �
X
i2I

X
j2J

X
t2T

Y0
jtdijt �

X
j2J

X
t2T

qjY
0
jtcjt

Subject to

kit � dijt � bitcjt 6 cijt 8i 2 I ; j 2 J ; t 2 T ð20Þ
dijt ; cjt P 0 8i 2 I ; j 2 J ; t 2 T ð21Þ
kit 2 R 8i 2 I ; t 2 T ð22Þ

In this formulation Y0
jt are core points which can be updated as

follows: Y0
jt ¼ sY0

jt þ ð1� sÞŶ jt; 8j 2 J ; t 2 T . fŶ jtgj2J ;t2T is obtained
from solution of the current master problem. Experimental results
indicate that setting s ¼ 0:5 provides the best empirical results.
Note that the generation of pareto-optimal cuts usually improves
the convergence of the algorithm but requires solving two different
linear programs sequentially for each subproblem, i.e., use

fY0
jtgj2J ;t2T to solve ½DSPðMMWÞ�, and then use fŶ jtgj2J ;t2T to solve

dual subproblem ½DSP�. We note that the auxiliary subproblem
½DSPðMMWÞ� is independent from the solutions of the dual sub-
problem ½DSP� which helps the Benders master problem to be
one step closer to the optimal solution from the very first iteration
(Papadakos, 2008).

3.3.3. Knapsack inequalities
Santoso et al. (2005) show that when a good upper bound is

available from the Benders decomposition algorithm, then adding
knapsack inequalities of the following forms will help the commer-
cial solvers such as CPLEX to derive a varieties of valid inequalities
from it. This will speed up the branch and bound process of the sol-
ver and eventually will expedite the convergence of the Benders
decomposition algorithm. Let UBn and LBn denote the best upper
and lower bound obtained so far. Therefore, the following valid
inequalities are added to the master problem ½MP� in iteration
nþ 1:

LBn 6
X
j2J

X
t2T

wjtY jt þ gjtUjt þ ljtVjt

� �
þ h ð23Þ

UBn P
X
i2I

X
j2J

X
t2T

wjt � dijt � qjcjt
� �

Yjt þ
X
j2J

X
t2T

gjtUjt

þ
X
j2J

X
t2T

ljtV jt þ
X
i2I

X
t2T

kit ð24Þ
3.3.4. Integer cuts
In the earlier stage of the Benders decomposition algorithm, the

master problem often produces same values for some of the inte-
ger variables over the iterations. This does not help the conver-
gence of the Benders decomposition algorithm and at the same
time increases the running time of the overall algorithm. To reduce
the search space and expedite the running time of the overall
algorithm, the following integer cut is added in each iteration of
the Benders master problem (Fischetti and Lodi, 2003). Let Yn

1 ¼
fðj; tÞjŶn

jt ¼ 1;8j 2 J ; t 2 T g where Ŷn
jt for j 2 J ; t 2 T be the solu-

tions obtained from solving the master problem in iteration n.
We add the following constraints to the master problem ½MP� in
iteration nþ 1:X
ðj;tÞ2Yn1

ð1� YjtÞ þ
X
ðj;tÞRYn1

Yjt P 1 ð25Þ

This inequality forces the values of the binary facility location
variables in iteration nþ 1 to be different from iteration n i.e.,
the two consecutive decisions will differ by at least one variable.
Adding these cuts to the mater problem excludes the solutions
already identified in the previous iterations and thus expedite
the running time of the overall algorithm.

3.3.5. Heuristics improvements
Obtaining good solutions before convergence: In the initial

stage of the Benders decomposition algorithm, the master problem
typically produces low-quality solutions. The process continues
until sufficient information from subproblem is passed to the mas-
ter problem via constraints (15). Additionally, the master problem
is an integer problem for which generating an optimal solution
even for a moderate size network problem, is a challenging task.
In order to alleviate this problem, we initially set a large optimality
gap which is gradually reduced as the algorithm progresses. For



Table 2
Problem size of the test instances.

Case jI j jJ j jT j Binary
variables

Continuous
variables

No. of
constraints

1 50 50 5 750 12,500 13,251
2 50 50 10 1500 25,000 26,501
3 100 100 5 1500 50,000 51,501
4 100 100 10 3000 100,000 103,001
5 150 150 5 2250 112,500 114,751
6 150 150 10 4500 225,000 229,501
7 200 200 5 3000 200,000 203,001
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instance, initially an optimality gap is set at 5%, which is reduced to
1% when the gap between the upper and lower bound of the Ben-
ders decomposition algorithm falls below 10%.

Setting branching priorities: We set branching priorities
explicitly to help CPLEX decides the order in which the solver
branch on variables. Our numerical analysis indicates that branch-
ing on variables Yjt first, followed by Ujt and Vjt save some compu-
tational time in solving the Benders master problem ½MP�.

3.4. The hybrid solution algorithm

This hybrid solution algorithm (½RH-Benders�) combines rolling
horizon algorithm with the accelerated Benders decomposition
algorithm. In this approach, the accelerated Benders decomposi-
tion algorithm is used to solve the subproblems obtained by the
rolling horizon algorithm. This hybrid solution algorithm is partic-
ularly useful when the network size is sufficiently large (i.e., a large
set of jJ j and jT j) and CPLEX finds it difficult to solve the first few
subproblems of the rolling horizon algorithm. Our computational
results indicate that as soon as the first few subproblems of the
rolling horizon algorithm are solved (sn), the remaining subprob-
lems can be tackled fairly by CPLEX in a reasonable amount of time.
This motivates us to apply the accelerated Benders decomposition
algorithm (discussed in Section 3.3) to solve the first few subprob-
lems (i.e., sn ¼ 3) of the rolling horizon algorithm (s 6 sn), and solve
the remaining subproblems (s > sn) using CPLEX. The algorithm
terminates when all the subproblems are investigated. Note that,
the aim of this approach is to provide a high quality feasible solu-
tion for model ½DFLP� in a reasonable amount of time. The overall
algorithm is shown in Algorithm 3.

Algorithm 3. The Hybrid Solution Algorithm (RH-Benders)

ts0 ¼ 0; s 1; Ms; sn  3, terminate  false
while (terminate ¼ false) do
if (s 6 sn) then
Set:
Yjt 2 f0;1g; Vjt 2 f0;1g and Ujt 2 f0;1g for

ts0 6 t 6 ts0 þMs

0 6 Yjt 6 1; 0 6 Vjt 6 1 and 0 6 Ujt 6 1 for t > ts0 þMs

Use Algorithm 2 to solve the approximate sub-problem
½DFLPðsÞ�
end if
if (s > sn) then
Set:
Yjt 2 f0;1g; Vjt 2 f0;1g and Ujt 2 f0;1g for

ts0 6 t 6 ts0 þMs

0 6 Yjt 6 1; 0 6 Vjt 6 1 and 0 6 Ujt 6 1 for t > ts0 þMs

Use CPLEX to solve the approximate sub-problem
½DFLPðsÞ�
end if
if (t0 > jT j) then
stop  true

end if
s sþ 1
Fixing the values of Yjt ; Vjt and Ujt for t < ts0

end while
8 200 200 10 6000 400,000 406,001
9 250 250 5 3750 312,500 316,251

10 250 250 10 7500 625,000 632,501
11 300 300 5 4500 450,000 454,501
12 300 300 10 9000 900,000 909,001
13 350 350 5 5250 612,500 617,751
14 350 350 10 10,500 1,225,000 1,235,501
4. Computational experiments

This section presents a comprehensive analysis of the solution
algorithms introduced in the previous section for the DFLP. All
the algorithms, including the one developed by Torres-Soto and
Uster (2011), are coded in GAMS 24.2.1 (General Algebraic
Modeling System (GAMS), 2013) and executed on a desktop com-
puter with Intel Core i7 3.50 GHz processor and 32.0 GB RAM.
The optimization solver used is ILOG CPLEX 12.6.

Table 2 summarizes the characteristics of the input parameters
used in the problem instances, referred to as cases. The problem
instances used in the computational experiments are generated
by following the same procedure as described in Torres-Soto and
Uster (2011). Accordingly, the total demand of customers during
the time horizon follows one of the three patterns: (i) increasing,
(ii) decreasing, or (iii) steady. They use four values for the number
of customer and facility locations jI j ¼ jJ j ¼ f50;100;150;200g,
and two values for the number of periods in the planning horizon,
jT j ¼ f5;10g. We add three different values to the list of values for
the number of customer and facility locations (jI j ¼ jJ j ¼
f50;100;150;200g [ f250;300;350g) to create more challenging
problem instances. The corresponding number of binary and con-
tinuous decision variables in each problem instance are also given
in Table 2. The cost parameters considered in this model are
assumed to be computed in terms of their present values. The fixed
cost of operating a facility (wjt) is generated randomly from a
discrete uniform distribution U½u;u�, where, 0 < u < u. Let h ¼
ðuþ uÞ=2. The fixed cost of opening a facility (gjt) is generated
randomly from a uniform distribution U½0:75h;0:85h�, like the fixed
cost of closing a facility (ljt) is generated randomly from a uniform
distribution U½0:10h;0:15h�. We assume that no facilities operate at
the beginning of the first period i.e., Yj0 ¼ 0; 8j 2 J . The capacity of
the facilities (qj) at location j 2 J , the demand of customer (bit) in
location i 2 I , and the distance (dij) between customer i 2 I and
facility j 2 J can be obtained from http://ise.tamu.edu/LNS/dcflp-
data.html. For all problem instances, a ¼ 1.

Tables 3–5 assess the performance of the three proposed algo-
rithms for each demand pattern discussed above. In addition, the
performance of CPLEX and the Benders algorithm proposed in
Torres-Soto and Uster (2011) is reported. For each pattern, results
include the percent optimality gap, the solution time in seconds,
and the number of iterations applied to the solution techniques.
We use one of the following criteria to terminate the algorithms:
(i) the optimality gap between the upper (UB) and lower bound
(LB) falls below a threshold value �, i.e., � ¼ jUB� LBj=UB ¼
0:001; (ii) the maximum time limit is reached (10,800 CPU sec-
onds); or (iii) the maximum number of iteration is reached
(Iter = 500).

From the results presented in Tables 3–5, both the three algo-
rithms introduced here and the Benders decomposition algorithm
in Torres-Soto and Uster (2011) perform better than the branch-
and-cut procedure of CPLEX in terms of solution time and percent

http://ise.tamu.edu/LNS/dcflp-data.html
http://ise.tamu.edu/LNS/dcflp-data.html


Table 3
Computation results for ½DFLP� under steady demand.

Case CPLEX Torres-Soto and Uster (2011) Accelerated Benders RH Algorithm RH-Benders

Gap (%) CPU (s) Gap (%) CPU (s) Iter Gap (%) CPU (s) Iter Gap (%) CPU (s) Gap (%) CPU (s)

1 0.09 1031.2 0.08 13.8 14 0.09 10.5 10 0.09 31.3 0.12 7.3
2 0.09 7203.3 0.09 19.6 12 0.09 23.9 12 0.14 484.1 0.16 12.9
3 1.31 10,800.0 0.08 123.6 28 0.07 109.5 18 0.26 1057.7 0.21 82.1
4 3.33 10,800.0 0.08 289.2 23 0.09 231.4 16 1.98 2432.8 0.11 122.6
5 1.72 10,800.0 0.09 414.4 25 0.08 311.8 21 1.05 4524.8 0.19 110.9
6 2.96 10,800.0 0.07 794.4 26 0.08 427.4 20 1.06 5527.1 0.20 206.7
7 4.76 10,800.0 0.09 1423.8 32 0.07 945.3 25 2.14 9686.6 0.18 573.4
8 n:a:a 10,800.0 0.09 1966.7 34 0.08 1404.4 21 8.78 10,742.1 0.17 701.7
9 n:a:a 10,800.0 0.08 5546.8 76 0.09 4881.7 69 6.64 10,800.0 0.21 1913.5

10 n:a:a 10,800.0 4.48 10,800.0 110 1.69 10,800.0 102 12.29 10,800.0 0.34 3104.8
11 n:a:a 10,800.0 1.21 10,800.0 144 0.84 10,800.0 134 8.89 10,800.0 0.26 2411.7
12 n:a:a 10,800.0 11.74 10,800.0 94 4.52 10,800.0 88 n:a:a 10,800.0 0.31 3577.8
13 n:a:a 10,800.0 5.22 10,800.0 89 1.51 10,800.0 77 9.29 10,800.0 0.61 3004.1
14 n:a:a 10,800.0 16.64 10,800.0 62 6.21 10,800.0 54 n:a:a 10,800.0 0.55 4112.8

a Unable to find an integer feasible solution within the time limit.

Table 4
Computation results for ½DFLP� under increasing demand.

Case CPLEX Torres-Soto and Uster (2011) Accelerated Benders RH Algorithm RH-Benders

Gap (%) CPU (s) Gap (%) CPU (s) Iter Gap (%) CPU (s) Iter Gap (%) CPU (s) Gap (%) CPU (s)

1 0.09 620.9 0.06 19.7 11 0.08 20.8 10 0.27 247.1 0.14 22.1
2 0.01 8552.5 0.09 26.4 14 0.07 25.9 10 0.18 1221.8 0.16 26.2
3 0.09 3936.6 0.07 301.7 32 0.04 279.5 24 0.12 1427.6 0.17 179.4
4 1.67 10,800.0 0.09 394.2 34 0.07 351.7 28 0.72 7598.7 0.20 201.5
5 1.00 10,800.0 0.08 822.6 31 0.08 733.3 26 0.51 7516.5 0.13 312.6
6 2.61 10,800.0 0.09 1101.9 34 0.09 916.4 28 1.81 7622.8 0.22 564.3
7 0.73 10,800.0 0.08 1962.1 47 0.09 1729.3 37 0.33 8035.9 0.24 774.8
8 88.16 10,800.0 0.08 2338.2 44 0.08 2091.7 35 14.69 10,689.2 0.21 1089.2
9 n:a:a 10,800.0 0.09 8229.6 121 0.09 6994.1 113 8.86 10,800.0 0.32 1820.4

10 n:a:a 10,800.0 3.38 10,800.0 114 1.15 10,800.0 99 16.47 10,800.0 0.38 2934.5
11 n:a:a 10,800.0 0.94 10,800.0 147 0.36 10,800.0 132 11.54 10,800.0 0.36 2422.1
12 n:a:a 10,800.0 7.93 10,800.0 97 3.34 10,800.0 83 17.78 10,800.0 0.44 3689.7
13 n:a:a 10,800.0 4.62 10,800.0 85 2.26 10,800.0 81 9.17 10,800.0 0.84 3157.4
14 n:a:a 10,800.0 14.25 10,800.0 61 8.11 10,800.0 59 n:a:a 10,800.0 0.67 4058.5

a Unable to find an integer feasible solution within the time limit.

Table 5
Computation results for ½DFLP� under decreasing demand.

Case CPLEX Torres-Soto and Uster (2011) Accelerated Benders RH Algorithm RH-Benders

Gap (%) CPU (s) Gap (%) CPU (s) Iter Gap (%) CPU (s) Iter Gap (%) CPU (s) Gap (%) CPU (s)

1 0.09 925.4 0.08 24.2 19 0.09 16.7 15 0.27 179.7 0.24 18.8
2 0.09 1880.2 0.09 26.4 17 0.08 17.4 11 0.22 432.4 0.23 22.3
3 1.64 10,800.0 0.09 144.8 28 0.06 112.7 20 0.19 996.2 0.21 74.6
4 2.61 10,800.0 0.06 151.7 29 0.09 120.9 18 0.20 1109.4 0.17 89.7
5 2.89 10,800.0 0.08 722.6 33 0.09 609.7 26 0.88 7379.5 0.17 279.5
6 4.00 10,800.0 0.07 765.8 31 0.08 710.6 25 1.55 7422.1 0.34 322.1
7 3.41 10,800.0 0.08 1421.8 35 0.04 1173.6 26 2.01 7826.8 0.31 576.8
8 3.76 10,800.0 0.09 2438.7 42 0.07 1967.1 33 2.55 8312.1 0.28 962.1
9 26.67 10,800.0 0.09 7142.4 84 0.09 6127.5 71 4.16 10,800.0 0.32 1801.5

10 n:a:a 10,800.0 5.12 10,800.0 116 2.27 10,800.0 103 8.66 10,800.0 0.40 3172.7
11 n:a:a 10,800.0 1.22 10,800.0 142 0.83 10,800.0 129 5.84 10,800.0 0.31 2600.2
12 n:a:a 10,800.0 8.43 10,800.0 101 3.19 10,800.0 84 15.26 10,800.0 0.48 3477.3
13 n:a:a 10,800.0 7.57 10,800.0 88 2.21 10,800.0 76 7.24 10,800.0 0.65 3215.6
14 n:a:a 10,800.0 17.44 10,800.0 62 9.16 10,800.0 57 n:a:a 10,800.0 0.72 3882.5

a Unable to find an integer feasible solution within the time limit.
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optimality gap. CPLEX cannot terminate with a solution within the
1% optimality gap for the problem instances with jI j ¼ jJ j > 50 in
10,800 s time limit. The only exception is case 3 in Table 4. Even for
the smaller cases 1 and 2, CPLEX is outperformed, in terms of solu-
tion time, by the solution methods presented here and the Benders
decomposition algorithm in Torres-Soto and Uster (2011). The
accelerated Benders algorithm developed in this study and its
counterpart in Torres-Soto and Uster (2011) terminate with a near
optimal solution ð< 0:1%Þ for the first nine problem cases. On the
other hand, for the same first nine problem cases, the rolling hori-
zon Benders ½RH-Benders� algorithm obtains solutions faster than
these two Benders variants with slightly worse optimality gaps
(6 0:34%). The rolling horizon heuristic ½RH Algorithm� has infe-
rior solution quality and time compared to the Benders algorithms.
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Yet, for all of the problem cases, ½RH Algorithm� provides better
solutions than CPLEX in terms of both average optimality gap
and solution time.

For the larger problem cases (10–14) and all demand patterns in
Tables 3–5, CPLEX is unable to report an integer feasible solution
within the time limit. For the same set of problem cases, the rolling
horizon heuristic ½RH Algorithm�, the accelerated Benders algo-
rithm and its counterpart in Torres-Soto and Uster (2011) reach
the time limit before obtaining an �-optimal solution. Among
them, the accelerated Benders achieves the smallest optimality
gap for each problem case (10–14) with fewer number of itera-
tions. On the other hand, in terms of solution time, the hybrid Ben-
ders decomposition algorithm outperforms all other solution
techniques by a factor of two in every problem case. In return,
the worst case optimality gap of the hybrid algorithm is only
0.72% across all problem cases.

5. Conclusions

This paper presents two novel Benders decomposition algo-
rithms and one rolling horizon heuristics to efficiently solve the
DFLP in which facility (re)location decisions are made for each time
period across the entire planning horizon. In order to assess the
performance of these techniques, the solution quality and time of
the algorithms developed here are compared with both CPLEX
and the Benders algorithm developed by Torres-Soto and Uster
(2011) over their expanded test cases. Careful analysis of the results
shows that both the accelerated Benders algorithm presented in
this paper and its counterpart in Torres-Soto and Uster (2011) pro-
vide better quality solutions than the other algorithms for the smal-
ler problem cases (1–9). However, our hybrid Benders algorithm
½RH-Benders� obtains near optimal solutions for all problem cases
in much shorter computational time. Moreover, the rolling horizon
algorithm developed in this paper is demonstrated to be more effi-
cient and effective than CPLEX for almost every problem case,
although it is outperformed by all three Benders algorithms in
terms of average solution time and optimality gap.

Considering the computational gains via our hybrid Benders
algorithm, further research should be directed toward the devel-
opment of another hybrid Benders algorithm for the DFLP that
considers multi-commodities and stochastic demand arrivals.
Multi-echelon problems that include inventory control policies
can also be embedded into this future application. Another
extension of this work is to model and solve a dynamic facility
location problem that accounts for customer preferences, market
movements, competition, and other dynamics of supply chain
management.

References

Arabani, A. B., & Farahani, R. Z. (2012). Facility location dynamics: An overview of
classifications and applications. Computers & Industrial Engineering, 62(1),
408–420.

Balasubramanian, J., & Grossmann, I. (2004). Approximation to multistage
stochastic optimization in multiperiod batch plant scheduling under demand
uncertainty. Industrial & Engineering Chemistry Research, 43(14), 3695–3713.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, 4, 238–252.

Birge, J. R., & Louveaux, F. V. (1988). A multicut algorithm for two-stage stochastic
linear programs. European Journal of Operational Research, 34(3), 384–392.
Canel, C., & Khumawala, B. M. (1996). A mixed-integer programming approach for
the international facilities location problem. International Journal of Operations
& Production Management, 16(4), 49–68.

Canel, C., & Khumawala, B. M. (1997). Multi-period international facilities location:
An algorithm and application. International Journal of Production Research, 35(7),
1891–1910.

Canel, C., & Khumawala, B. M. (2001). International facilities location: A heuristic
procedure for the dynamic uncapacitated problem. International Journal of
Production Research, 39(17), 3975–4000.

Canel, C., Khumawala, B. M., Law, J., & Loh, A. (2001). An algorithm for the
capacitated, multi-commodity multi-period facility location problem.
Computers & Operations Research, 28(5), 411–427.

Current, J., Ratick, S., & ReVelle, C. (1998). Dynamic facility location when the total
number of facilities is uncertain: A decision analysis approach. European Journal
of Operational Research, 110(3), 597–609.

Drezner, Z. (1995). Dynamic facility location: The progressive p-median problem.
Location Science, 3(1), 1–7.

Drezner, Z., & Wesolowsky, G. O. (1991). Facility location when demand is time
dependent. Naval Research Logistics, 38(5), 763–777.

Farahani, R., Drezner, Z., & Asgari, N. (2009). Single facility location and relocation
problem with time dependent weights and discrete planning horizon. Annals of
Operations Research, 167(1), 353–368.

Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming, 98,
23–47.

General Algebraic Modeling System (GAMS) (2013). Available from: <http://www.
gams.com/>.

Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system
design by Benders decomposition. Management Science, 20(5), 822–844.

Ghaderi, A., & Jabalameli, M. S. (2013). Modeling the budget-constrained dynamic
uncapacitated facility locationnetwork design problem and solving it via two
efficient heuristics: A case study of health care. Mathematical and Computer
Modelling, 57(3–4), 382–400.

Gue, K. R. (2003). A dynamic distribution model for combat logistics. Computers &
Operations Research, 30(3), 367–381.

Jena, S. D., Cordeau, J. F., & Gendron, B. (2015). Dynamic facility location with
generalized modular capacities. Transportation Science, 49(3), 484–499.

Jena S. D., Cordeau J. F., & Gendron B. (2014). Lagrangian heuristics for large-scale
dynamic facility location with generalized modular capacities. Tech. rep.
CIRRELT-2014-21, Montreal.

Klose, A., & Drexl, A. (2005). Facility location models for distribution system design.
European Journal of Operational Research, 162(1), 4–29.

Kostina, A. M., Guillen-Gosalbeza, G., Meleb, F. D., Bagajewiczc, M. J., & Jimeneza, L.
(2011). A novel rolling horizon strategy for the strategic planning of supply
chains. Application to the sugar cane industry of Argentina. Computers &
Chemical Engineering, 35, 2540–2563.

Lim, S., & Kim, Y. (1999). An integrated approach to dynamic plant location and
capacity planning. Journal of the Operational Research society, 50(12),
1205–1216.

Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition:
Algorithmic enhancement and model selection criteria. Operations Research,
29, 464–484.

Manzini, R., & Gebennini, E. (2008). Optimization models for the dynamic facility
location and allocation problem. International Journal of Production Research, 46
(8), 2061–2086.

Melo, M. T., Nickel, S., & da Gama, F. S. (2006). Dynamic multi-commodity
capacitated facility location: A mathematical modeling framework for strategic
supply chain planning. Computers & Operations Research, 33(1), 181–208.

Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply
chain management – A review. European Journal of Operational Research, 196(2),
401–412.

Mirchandani, P. B., & Odoni, A. R. (1979). Locations of medians on stochastic
networks. Transportation Science, 13(2), 85–97.

Papadakos, N. (2008). Practical enhancements to the Magnanti-Wong method.
Operations Research Letters, 36, 444–449.

Roy, T. J. V., & Erlenkotter, D. (1982). A dual-based procedure for dynamic facility
location. Management Science, 28(10), 1091–1105.

Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic
programming approach for supply chain network design under uncertainty.
European Journal of Operational Research, 167, 96–115.

Scott, A. J. (1971). Dynamic location-allocation systems: Some basic planning
strategies. Environment and Planning, 3(1), 73–82.

Torres-Soto, J. E., & Uster, H. (2011). Dynamic-demand capacitated facility location
problems with and without relocation. International Journal of Production
Research, 49(13), 3979–4005.

http://refhub.elsevier.com/S0360-8352(16)30224-8/h0005
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0005
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0005
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0010
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0010
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0010
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0015
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0015
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0020
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0020
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0025
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0025
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0025
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0030
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0030
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0030
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0035
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0035
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0035
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0040
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0040
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0040
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0045
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0045
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0045
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0050
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0050
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0055
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0055
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0060
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0060
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0060
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0065
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0065
http://www.gams.com/
http://www.gams.com/
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0075
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0075
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0080
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0080
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0080
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0080
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0085
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0085
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0090
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0090
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0100
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0100
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0105
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0105
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0105
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0105
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0110
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0110
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0110
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0115
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0115
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0115
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0120
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0120
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0120
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0125
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0125
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0125
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0130
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0130
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0130
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0135
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0135
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0140
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0140
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0145
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0145
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0150
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0150
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0150
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0155
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0155
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0160
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0160
http://refhub.elsevier.com/S0360-8352(16)30224-8/h0160

	A Benders based rolling horizon algorithm for a dynamic facility location problem
	1 Introduction
	2 Problem formulation
	3 Solution methods
	3.1 Rolling Horizon (RH) algorithm
	3.2 Benders decomposition algorithm
	3.3 Accelerating Benders decomposition algorithm
	3.3.1 Multi-cuts
	3.3.2 Pareto-optimality cuts
	3.3.3 Knapsack inequalities
	3.3.4 Integer cuts
	3.3.5 Heuristics improvements

	3.4 The hybrid solution algorithm

	4 Computational experiments
	5 Conclusions
	References


